C4graphGraph forms for C4 [ 192, 115 ] = UG(ATD[192,195])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 115 ] = UG(ATD[192,195]).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {185, 187}, {168, 171}, {49, 53}, {1, 4}, {99, 102}, {1, 7}, {177, 183}, {162, 164}, {18, 21}, {137, 142}, {146, 149}, {17, 25}, {4, 13}, {39, 45}, {80, 90}, {54, 60}, {102, 108}, {1, 10}, {33, 42}, {145, 154}, {100, 104}, {178, 190}, {162, 174}, {131, 143}, {53, 56}, {162, 175}, {146, 159}, {133, 139}, {32, 48}, {1, 16}, {38, 55}, {110, 127}, {141, 156}, {4, 22}, {171, 185}, {165, 183}, {13, 31}, {141, 159}, {68, 87}, {138, 153}, {7, 19}, {78, 90}, {75, 95}, {69, 81}, {100, 112}, {39, 50}, {42, 63}, {97, 116}, {134, 147}, {10, 28}, {108, 122}, {129, 150}, {163, 180}, {173, 181}, {44, 53}, {68, 93}, {128, 153}, {97, 123}, {66, 89}, {167, 188}, {75, 87}, {132, 152}, {174, 179}, {7, 25}, {160, 190}, {37, 59}, {105, 119}, {106, 116}, {74, 106}, {77, 109}, {140, 172}, {149, 181}, {30, 63}, {84, 117}, {92, 125}, {7, 37}, {30, 60}, {137, 171}, {9, 42}, {154, 185}, {74, 105}, {10, 46}, {25, 61}, {19, 55}, {16, 52}, {129, 165}, {69, 96}, {159, 186}, {83, 118}, {4, 34}, {20, 50}, {72, 111}, {130, 170}, {10, 35}, {75, 98}, {92, 117}, {141, 164}, {81, 123}, {22, 58}, {153, 181}, {9, 36}, {130, 175}, {149, 184}, {65, 111}, {146, 188}, {20, 59}, {29, 44}, {67, 113}, {76, 126}, {88, 106}, {86, 101}, {137, 189}, {148, 160}, {18, 39}, {139, 190}, {18, 36}, {77, 123}, {64, 118}, {91, 109}, {14, 57}, {151, 160}, {16, 40}, {73, 113}, {19, 43}, {94, 102}, {131, 187}, {136, 176}, {146, 170}, {64, 121}, {70, 124}, {77, 119}, {23, 44}, {27, 32}, {88, 99}, {143, 180}, {8, 52}, {67, 127}, {64, 124}, {13, 49}, {133, 184}, {128, 191}, {21, 84}, {38, 103}, {9, 75}, {49, 115}, {40, 106}, {51, 119}, {61, 121}, {55, 115}, {34, 103}, {43, 109}, {60, 122}, {25, 94}, {59, 124}, {12, 68}, {40, 96}, {63, 117}, {3, 72}, {41, 98}, {13, 70}, {26, 86}, {58, 118}, {22, 91}, {41, 103}, {57, 119}, {30, 81}, {45, 125}, {22, 71}, {29, 76}, {3, 81}, {11, 89}, {44, 120}, {58, 110}, {45, 123}, {21, 66}, {14, 86}, {41, 113}, {16, 73}, {61, 100}, {24, 65}, {23, 78}, {15, 84}, {28, 64}, {31, 67}, {46, 112}, {19, 76}, {54, 105}, {58, 89}, {38, 66}, {2, 103}, {52, 83}, {62, 89}, {17, 120}, {39, 78}, {27, 114}, {5, 111}, {33, 74}, {36, 72}, {8, 101}, {34, 79}, {14, 96}, {47, 95}, {9, 120}, {29, 108}, {26, 107}, {26, 104}, {43, 88}, {47, 92}, {12, 122}, {182, 192}, {18, 101}, {62, 73}, {54, 65}, {37, 82}, {47, 86}, {52, 77}, {6, 125}, {31, 100}, {26, 97}, {20, 104}, {15, 114}, {40, 85}, {28, 97}, {48, 79}, {63, 191}, {6, 135}, {15, 140}, {35, 166}, {2, 132}, {57, 191}, {48, 182}, {3, 138}, {24, 145}, {50, 191}, {38, 168}, {46, 160}, {41, 167}, {6, 150}, {62, 174}, {33, 177}, {2, 147}, {53, 167}, {11, 152}, {84, 192}, {29, 136}, {56, 173}, {51, 165}, {21, 141}, {24, 128}, {31, 133}, {5, 158}, {56, 163}, {35, 184}, {11, 144}, {15, 147}, {51, 174}, {5, 155}, {61, 163}, {42, 180}, {28, 130}, {36, 132}, {11, 170}, {8, 170}, {98, 192}, {56, 155}, {3, 166}, {47, 138}, {43, 142}, {27, 179}, {50, 155}, {17, 187}, {60, 150}, {55, 157}, {34, 136}, {5, 169}, {108, 192}, {23, 186}, {46, 131}, {30, 179}, {37, 139}, {51, 157}, {24, 183}, {62, 142}, {48, 129}, {20, 166}, {35, 145}, {27, 168}, {59, 143}, {8, 189}, {14, 184}, {23, 161}, {12, 187}, {49, 134}, {2, 186}, {45, 149}, {32, 152}, {17, 169}, {54, 140}, {6, 189}, {32, 156}, {12, 177}, {57, 135}, {33, 158}, {95, 159}, {67, 130}, {79, 142}, {115, 178}, {85, 151}, {105, 171}, {114, 177}, {92, 152}, {95, 155}, {115, 182}, {99, 165}, {107, 173}, {126, 185}, {82, 154}, {85, 157}, {93, 148}, {94, 151}, {124, 181}, {121, 178}, {69, 137}, {82, 158}, {65, 143}, {102, 168}, {111, 161}, {72, 135}, {85, 154}, {96, 175}, {99, 172}, {107, 164}, {127, 176}, {90, 138}, {87, 134}, {118, 167}, {70, 148}, {127, 173}, {66, 150}, {104, 188}, {110, 186}, {117, 161}, {83, 133}, {101, 179}, {76, 148}, {79, 151}, {94, 134}, {110, 182}, {71, 157}, {71, 156}, {88, 131}, {78, 144}, {125, 162}, {80, 176}, {68, 161}, {91, 190}, {87, 176}, {112, 153}, {74, 166}, {80, 188}, {113, 156}, {126, 147}, {90, 180}, {112, 158}, {70, 169}, {93, 172}, {121, 136}, {69, 183}, {98, 144}, {91, 175}, {116, 128}, {120, 140}, {114, 135}, {83, 164}, {80, 169}, {71, 189}, {73, 178}, {107, 144}, {109, 145}, {82, 172}, {93, 163}, {122, 132}, {116, 139}, {126, 129} }>;

(II) A more general form is to represent the graph as the orbit of {185, 187} under the group generated by the following permutations:

a: (1, 4, 13, 31, 67, 127, 173, 107, 144, 78, 39, 18, 36, 72, 135, 114, 177, 183, 165, 99, 88, 43, 19, 7)(2, 5, 14, 32, 68, 128, 174, 108, 143, 77, 38, 17, 35, 71, 134, 112, 175, 182, 163, 97, 89, 44, 20, 8)(3, 6, 15, 33, 69, 129, 172, 106, 142, 76, 37, 16, 34, 70, 133, 113, 176, 181, 164, 98, 90, 45, 21, 9)(10, 22, 49, 100, 130, 110, 56, 26, 11, 23, 50, 101, 132, 111, 57, 27, 12, 24, 51, 102, 131, 109, 55, 25)(28, 58, 53, 104, 170, 186, 155, 86, 152, 161, 191, 179, 122, 65, 119, 168, 187, 145, 157, 94, 46, 91, 115, 61)(29, 59, 52, 103, 169, 184, 156, 87, 153, 162, 192, 180, 123, 66, 120, 166, 189, 147, 158, 96, 48, 93, 116, 62)(30, 60, 54, 105, 171, 185, 154, 85, 151, 160, 190, 178, 121, 64, 118, 167, 188, 146, 159, 95, 47, 92, 117, 63)(40, 79, 148, 139, 73, 136, 124, 83, 41, 80, 149, 141, 75, 138, 125, 84, 42, 81, 150, 140, 74, 137, 126, 82)
b: (2, 3)(4, 10)(5, 11)(6, 12)(7, 16)(8, 17)(9, 18)(13, 28)(14, 29)(15, 30)(19, 40)(20, 41)(21, 42)(22, 46)(23, 47)(24, 48)(25, 52)(26, 53)(27, 54)(31, 64)(32, 65)(33, 66)(34, 35)(37, 73)(38, 74)(39, 75)(43, 85)(44, 86)(45, 87)(49, 97)(50, 98)(51, 99)(55, 106)(56, 107)(57, 108)(58, 112)(59, 113)(60, 114)(61, 83)(62, 82)(63, 84)(67, 124)(68, 125)(69, 126)(70, 130)(71, 131)(72, 132)(76, 96)(77, 94)(78, 95)(79, 145)(80, 146)(81, 147)(88, 157)(89, 158)(90, 159)(91, 160)(92, 161)(93, 162)(100, 118)(101, 120)(102, 119)(103, 166)(104, 167)(105, 168)(109, 151)(110, 153)(111, 152)(115, 116)(121, 133)(122, 135)(123, 134)(127, 181)(128, 182)(129, 183)(136, 184)(137, 185)(138, 186)(139, 178)(140, 179)(141, 180)(142, 154)(143, 156)(144, 155)(148, 175)(149, 176)(150, 177)(163, 164)(169, 170)(172, 174)(187, 189)(191, 192)
c: (1, 2, 154, 156, 177, 175, 117, 116, 144, 143, 118, 120)(3, 149, 155, 100, 176, 148, 115, 102, 142, 150, 119, 101)(4, 147, 85, 32, 183, 162, 63, 97, 78, 59, 167, 17)(5, 31, 87, 160, 182, 99, 62, 60, 77, 18, 166, 146)(6, 57, 86, 138, 181, 56, 61, 136, 76, 55, 168, 137)(7, 103, 185, 71, 114, 96, 92, 128, 107, 180, 64, 44)(8, 72, 184, 95, 112, 127, 93, 178, 108, 43, 66, 105)(9, 10, 186, 82, 113, 12, 91, 84, 106, 11, 65, 83)(13, 134, 151, 48, 165, 174, 30, 123, 39, 20, 188, 169)(14, 47, 153, 173, 163, 121, 29, 19, 38, 171, 189, 135)(15, 40, 152, 24, 164, 42, 28, 23, 37, 41, 187, 22)(16, 132, 145, 141, 33, 130, 161, 139, 98, 131, 58, 140)(21, 74, 170, 111, 133, 75, 46, 110, 172, 73, 122, 109)(25, 34, 126, 157, 27, 69, 125, 191, 26, 90, 124, 53)(35, 159, 158, 67, 68, 190, 192, 88, 89, 54, 52, 36)(45, 50, 104, 80, 70, 49, 94, 79, 129, 51, 179, 81)
d: (2, 101)(3, 120)(4, 16)(5, 33)(6, 98)(7, 10)(8, 103)(9, 72)(11, 66)(12, 50)(13, 40)(14, 134)(15, 47)(17, 166)(18, 132)(19, 28)(20, 187)(21, 152)(22, 73)(23, 30)(24, 163)(25, 35)(26, 126)(27, 159)(29, 123)(31, 85)(32, 141)(34, 52)(37, 46)(38, 170)(39, 122)(41, 189)(42, 111)(43, 64)(44, 81)(45, 108)(48, 164)(49, 96)(51, 127)(53, 69)(54, 90)(55, 130)(56, 183)(57, 87)(58, 62)(59, 131)(60, 78)(61, 145)(63, 161)(65, 180)(67, 157)(68, 191)(70, 106)(71, 113)(74, 169)(75, 135)(76, 97)(77, 136)(79, 83)(80, 105)(82, 112)(84, 92)(86, 147)(88, 124)(91, 178)(93, 128)(94, 184)(95, 114)(99, 181)(100, 154)(102, 149)(104, 185)(107, 129)(109, 121)(110, 174)(115, 175)(116, 148)(118, 142)(119, 176)(125, 192)(133, 151)(137, 167)(138, 140)(139, 160)(144, 150)(146, 168)(153, 172)(155, 177)(162, 182)(165, 173)(171, 188)(179, 186)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 115 ]
192
-1 4 16 7 10
-2 132 103 147 186
-3 166 81 72 138
-4 22 1 34 13
-5 111 155 158 169
-6 189 135 125 150
-7 1 25 37 19
-8 101 189 170 52
-9 36 42 75 120
-10 1 35 46 28
-11 89 144 170 152
-12 187 122 177 68
-13 4 70 49 31
-14 57 96 184 86
-15 114 147 84 140
-16 1 40 73 52
-17 187 25 169 120
-18 101 36 39 21
-19 55 7 43 76
-20 166 59 104 50
-21 66 18 84 141
-22 58 91 4 71
-23 44 78 161 186
-24 145 128 183 65
-25 17 61 94 7
-26 104 107 86 97
-27 168 179 114 32
-28 64 97 130 10
-29 44 136 108 76
-30 179 81 60 63
-31 67 100 133 13
-32 156 48 27 152
-33 177 158 74 42
-34 79 4 103 136
-35 166 145 184 10
-36 132 72 18 9
-37 59 82 7 139
-38 55 66 168 103
-39 45 78 50 18
-40 16 106 85 96
-41 167 113 103 98
-42 33 180 63 9
-43 88 19 109 142
-44 23 29 53 120
-45 123 125 39 149
-46 112 160 10 131
-47 92 138 95 86
-48 79 182 129 32
-49 13 134 115 53
-50 155 191 39 20
-51 165 157 119 174
-52 77 16 83 8
-53 44 56 167 49
-54 60 105 140 65
-55 157 38 115 19
-56 155 173 53 163
-57 14 135 191 119
-58 22 110 89 118
-59 143 124 37 20
-60 122 150 30 54
-61 121 100 25 163
-62 89 73 174 142
-63 191 117 30 42
-64 121 124 28 118
-65 143 111 24 54
-66 89 38 150 21
-67 113 127 31 130
-68 12 93 161 87
-69 81 137 183 96
-70 13 124 169 148
-71 22 156 189 157
-72 111 3 36 135
-73 178 113 16 62
-74 33 166 105 106
-75 95 9 87 98
-76 126 148 29 19
-77 123 52 119 109
-78 23 144 90 39
-79 34 48 151 142
-80 176 188 90 169
-81 123 3 69 30
-82 154 37 158 172
-83 133 52 118 164
-84 15 192 117 21
-85 154 157 40 151
-86 101 14 47 26
-87 176 68 134 75
-88 99 106 43 131
-89 11 66 58 62
-90 78 80 180 138
-91 22 190 109 175
-92 47 125 117 152
-93 68 148 172 163
-94 134 25 102 151
-95 155 47 159 75
-96 14 69 40 175
-97 123 26 28 116
-98 144 192 41 75
-99 88 165 102 172
-100 112 104 61 31
-101 179 18 8 86
-102 99 168 94 108
-103 34 2 38 41
-104 100 188 26 20
-105 171 74 119 54
-106 88 116 40 74
-107 144 26 173 164
-108 122 102 192 29
-109 77 145 91 43
-110 58 127 182 186
-111 5 72 161 65
-112 100 46 158 153
-113 67 156 73 41
-114 177 135 15 27
-115 55 178 49 182
-116 106 128 139 97
-117 92 84 161 63
-118 167 58 83 64
-119 77 57 105 51
-120 44 17 140 9
-121 178 136 61 64
-122 132 12 60 108
-123 77 45 81 97
-124 59 70 181 64
-125 45 92 6 162
-126 147 129 185 76
-127 110 176 67 173
-128 24 191 116 153
-129 165 48 126 150
-130 67 170 28 175
-131 88 143 187 46
-132 122 2 36 152
-133 83 139 184 31
-134 147 49 94 87
-135 57 114 6 72
-136 121 176 34 29
-137 189 69 171 142
-138 90 3 47 153
-139 133 190 37 116
-140 15 172 54 120
-141 156 159 21 164
-142 79 137 62 43
-143 59 180 65 131
-144 11 78 107 98
-145 154 24 35 109
-146 188 159 170 149
-147 2 134 15 126
-148 70 93 160 76
-149 45 146 181 184
-150 66 60 6 129
-151 79 94 160 85
-152 11 132 92 32
-153 112 181 138 128
-154 145 82 85 185
-155 56 5 50 95
-156 113 71 141 32
-157 55 71 51 85
-158 33 112 5 82
-159 146 95 141 186
-160 46 190 148 151
-161 23 111 68 117
-162 125 174 164 175
-163 56 180 93 61
-164 83 107 162 141
-165 99 51 183 129
-166 35 3 74 20
-167 188 41 118 53
-168 102 27 38 171
-169 80 70 5 17
-170 11 146 8 130
-171 168 137 105 185
-172 99 82 93 140
-173 56 181 127 107
-174 179 51 62 162
-175 91 96 162 130
-176 80 136 127 87
-177 33 12 114 183
-178 121 190 115 73
-179 101 27 30 174
-180 143 90 42 163
-181 124 149 173 153
-182 110 48 115 192
-183 165 177 24 69
-184 133 35 14 149
-185 154 187 126 171
-186 110 23 2 159
-187 12 17 185 131
-188 167 80 146 104
-189 71 137 6 8
-190 178 91 160 139
-191 57 50 128 63
-192 182 84 108 98
0

**************