C4graphGraph forms for C4 [ 192, 118 ] = UG(ATD[192,203])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 118 ] = UG(ATD[192,203]).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {24, 25}, {160, 162}, {1, 2}, {68, 71}, {49, 50}, {44, 47}, {17, 18}, {96, 99}, {33, 37}, {2, 7}, {67, 70}, {34, 39}, {11, 14}, {160, 166}, {161, 167}, {1, 6}, {10, 13}, {33, 40}, {84, 94}, {86, 92}, {102, 108}, {3, 8}, {176, 187}, {85, 89}, {150, 154}, {4, 9}, {80, 93}, {5, 10}, {12, 28}, {71, 87}, {36, 52}, {15, 31}, {14, 30}, {13, 29}, {96, 112}, {99, 115}, {34, 51}, {172, 189}, {142, 159}, {138, 155}, {4, 22}, {174, 188}, {173, 191}, {171, 185}, {9, 27}, {8, 26}, {5, 23}, {163, 176}, {12, 25}, {2, 20}, {32, 54}, {3, 21}, {37, 50}, {169, 190}, {103, 112}, {110, 118}, {104, 113}, {107, 114}, {109, 119}, {133, 158}, {174, 181}, {171, 183}, {44, 49}, {100, 121}, {6, 24}, {69, 91}, {7, 25}, {36, 59}, {167, 184}, {131, 156}, {24, 56}, {66, 99}, {154, 187}, {150, 183}, {76, 109}, {129, 163}, {4, 32}, {16, 52}, {11, 47}, {128, 164}, {137, 172}, {159, 186}, {157, 184}, {8, 46}, {77, 107}, {73, 110}, {73, 96}, {78, 100}, {16, 62}, {68, 106}, {17, 63}, {76, 98}, {31, 48}, {145, 190}, {16, 32}, {17, 33}, {7, 54}, {144, 161}, {19, 34}, {128, 177}, {10, 56}, {74, 120}, {15, 61}, {14, 60}, {11, 57}, {80, 98}, {6, 53}, {155, 168}, {143, 188}, {86, 101}, {156, 168}, {158, 170}, {157, 169}, {142, 187}, {152, 173}, {12, 58}, {155, 173}, {13, 59}, {88, 111}, {153, 174}, {91, 108}, {130, 186}, {86, 111}, {141, 180}, {139, 178}, {25, 35}, {159, 165}, {28, 38}, {93, 103}, {82, 105}, {90, 97}, {130, 185}, {87, 107}, {143, 178}, {9, 55}, {154, 164}, {151, 169}, {129, 191}, {153, 166}, {5, 71}, {62, 125}, {19, 84}, {15, 70}, {12, 66}, {29, 83}, {144, 192}, {60, 109}, {11, 89}, {45, 127}, {44, 126}, {41, 123}, {40, 122}, {23, 69}, {22, 68}, {19, 65}, {18, 64}, {1, 82}, {35, 119}, {29, 72}, {20, 66}, {43, 125}, {42, 124}, {21, 67}, {30, 73}, {57, 110}, {4, 92}, {18, 73}, {47, 116}, {15, 83}, {36, 120}, {27, 71}, {26, 70}, {39, 121}, {14, 81}, {52, 86}, {8, 107}, {59, 88}, {22, 114}, {53, 81}, {49, 85}, {48, 84}, {23, 115}, {20, 113}, {40, 78}, {41, 79}, {29, 117}, {31, 118}, {35, 74}, {38, 76}, {40, 66}, {39, 77}, {38, 74}, {51, 95}, {26, 116}, {37, 75}, {3, 108}, {48, 95}, {41, 70}, {42, 90}, {2, 112}, {178, 192}, {35, 81}, {27, 105}, {28, 106}, {30, 102}, {34, 91}, {3, 121}, {43, 81}, {42, 80}, {21, 111}, {38, 90}, {63, 67}, {52, 72}, {21, 104}, {46, 83}, {45, 80}, {43, 85}, {59, 69}, {18, 109}, {49, 78}, {48, 79}, {45, 82}, {13, 141}, {47, 175}, {5, 132}, {17, 149}, {26, 147}, {6, 140}, {60, 182}, {51, 191}, {53, 185}, {82, 192}, {54, 165}, {55, 163}, {62, 170}, {1, 150}, {63, 168}, {16, 135}, {46, 183}, {61, 164}, {58, 160}, {32, 187}, {60, 167}, {9, 148}, {10, 151}, {22, 136}, {56, 166}, {20, 139}, {28, 131}, {36, 133}, {61, 156}, {7, 164}, {30, 186}, {19, 181}, {45, 138}, {55, 159}, {104, 192}, {58, 147}, {44, 134}, {24, 179}, {57, 146}, {23, 186}, {43, 133}, {46, 128}, {37, 138}, {39, 136}, {33, 145}, {51, 130}, {42, 152}, {50, 129}, {55, 132}, {53, 128}, {54, 131}, {62, 136}, {63, 137}, {57, 142}, {27, 161}, {61, 135}, {50, 137}, {58, 134}, {31, 162}, {56, 133}, {41, 148}, {127, 191}, {124, 189}, {113, 179}, {97, 162}, {118, 181}, {126, 189}, {120, 188}, {95, 153}, {99, 165}, {119, 177}, {75, 140}, {115, 180}, {118, 190}, {123, 179}, {64, 138}, {65, 139}, {87, 157}, {93, 150}, {100, 175}, {117, 190}, {124, 183}, {125, 182}, {92, 144}, {116, 184}, {88, 149}, {79, 129}, {83, 157}, {120, 182}, {122, 180}, {126, 176}, {93, 146}, {97, 174}, {65, 145}, {72, 154}, {103, 181}, {125, 175}, {84, 135}, {91, 143}, {127, 171}, {75, 158}, {77, 152}, {101, 176}, {103, 178}, {108, 185}, {114, 167}, {94, 136}, {110, 184}, {116, 162}, {122, 172}, {76, 155}, {102, 177}, {85, 140}, {87, 141}, {105, 179}, {89, 130}, {95, 132}, {123, 160}, {69, 153}, {75, 151}, {90, 134}, {94, 131}, {114, 175}, {98, 188}, {106, 180}, {111, 143}, {64, 161}, {68, 165}, {113, 147}, {78, 170}, {77, 171}, {115, 149}, {79, 168}, {64, 169}, {92, 182}, {65, 170}, {117, 158}, {119, 156}, {74, 166}, {101, 137}, {126, 146}, {96, 145}, {101, 148}, {124, 141}, {67, 177}, {98, 144}, {106, 152}, {117, 135}, {121, 139}, {94, 173}, {97, 146}, {102, 149}, {127, 140}, {88, 172}, {72, 189}, {100, 147}, {89, 163}, {104, 148}, {122, 134}, {105, 151}, {112, 142}, {123, 132} }>;

(II) A more general form is to represent the graph as the orbit of {24, 25} under the group generated by the following permutations:

a: (2, 6)(4, 13)(5, 16)(7, 24)(8, 21)(9, 29)(10, 32)(11, 33)(12, 35)(14, 40)(15, 41)(17, 47)(18, 44)(19, 51)(20, 53)(22, 59)(23, 62)(26, 67)(27, 72)(28, 74)(30, 78)(31, 79)(36, 68)(37, 57)(39, 91)(42, 98)(43, 99)(45, 93)(46, 104)(49, 73)(50, 110)(52, 71)(54, 56)(55, 117)(58, 119)(60, 122)(61, 123)(63, 116)(64, 126)(65, 130)(66, 81)(69, 136)(75, 142)(76, 90)(77, 143)(82, 150)(83, 148)(84, 95)(85, 96)(86, 87)(88, 114)(89, 145)(92, 141)(94, 153)(97, 155)(100, 102)(101, 157)(103, 127)(105, 154)(106, 120)(107, 111)(108, 121)(109, 134)(112, 140)(113, 128)(115, 125)(118, 129)(124, 144)(131, 166)(132, 135)(133, 165)(137, 184)(138, 146)(139, 185)(147, 177)(149, 175)(151, 187)(152, 188)(156, 160)(158, 159)(161, 189)(162, 168)(163, 190)(164, 179)(167, 172)(169, 176)(170, 186)(171, 178)(173, 174)(180, 182)(181, 191)(183, 192)
b: (2, 82)(4, 33)(5, 110)(6, 150)(7, 45)(8, 108)(9, 145)(10, 57)(11, 13)(12, 98)(14, 141)(15, 51)(16, 50)(17, 22)(18, 68)(19, 41)(20, 192)(21, 121)(23, 184)(24, 93)(25, 80)(26, 91)(27, 96)(28, 76)(29, 89)(30, 87)(31, 95)(32, 37)(34, 70)(35, 42)(36, 44)(39, 67)(40, 92)(43, 189)(46, 185)(47, 59)(49, 52)(53, 183)(54, 138)(55, 190)(56, 146)(58, 188)(60, 180)(61, 191)(62, 137)(63, 136)(64, 165)(65, 148)(66, 144)(69, 116)(71, 73)(72, 85)(74, 90)(75, 187)(77, 177)(78, 86)(79, 84)(81, 124)(83, 130)(88, 175)(94, 168)(97, 166)(99, 161)(100, 111)(101, 170)(102, 107)(103, 179)(104, 139)(105, 112)(106, 109)(113, 178)(114, 149)(115, 167)(117, 163)(118, 132)(119, 152)(120, 134)(122, 182)(123, 181)(125, 172)(126, 133)(127, 164)(128, 171)(129, 135)(131, 155)(140, 154)(142, 151)(143, 147)(153, 162)(156, 173)(157, 186)(158, 176)(159, 169)(160, 174)
c: (1, 2, 7, 25, 12, 28, 38, 90, 42, 80, 93, 150)(3, 9, 30, 70, 5, 17, 48, 59, 50, 34, 86, 89)(4, 14, 26, 71, 18, 31, 13, 37, 19, 52, 85, 121)(6, 20, 54, 35, 58, 106, 76, 97, 124, 45, 103, 154)(8, 27, 73, 15, 10, 33, 84, 36, 49, 39, 92, 11)(16, 43, 100, 22, 60, 116, 87, 64, 118, 29, 75, 65)(21, 55, 102, 41, 23, 63, 95, 88, 129, 91, 101, 130)(24, 66, 131, 74, 134, 152, 98, 146, 183, 82, 112, 164)(32, 81, 147, 68, 109, 162, 141, 138, 181, 72, 140, 139)(40, 94, 120, 44, 77, 144, 57, 46, 105, 96, 61, 56)(47, 107, 161, 110, 83, 151, 145, 135, 133, 78, 136, 182)(51, 111, 163, 108, 148, 186, 67, 132, 149, 79, 69, 137)(53, 113, 165, 119, 160, 180, 155, 174, 189, 127, 178, 187)(62, 125, 175, 114, 167, 184, 157, 169, 190, 117, 158, 170)(99, 156, 166, 122, 173, 188, 126, 171, 192, 142, 128, 179)(104, 159, 177, 123, 115, 168, 153, 172, 191, 143, 176, 185)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 118 ]
192
-1 2 82 6 150
-2 1 112 7 20
-3 121 8 108 21
-4 22 92 9 32
-5 132 23 71 10
-6 1 24 140 53
-7 2 25 54 164
-8 46 3 26 107
-9 55 4 27 148
-10 56 13 5 151
-11 89 57 14 47
-12 66 25 58 28
-13 59 29 141 10
-14 11 81 60 30
-15 70 61 83 31
-16 135 62 52 32
-17 33 149 18 63
-18 17 73 64 109
-19 34 181 84 65
-20 66 2 113 139
-21 67 111 3 104
-22 68 4 114 136
-23 69 5 115 186
-24 56 25 179 6
-25 12 24 35 7
-26 70 147 116 8
-27 71 105 161 9
-28 12 38 106 131
-29 13 72 83 117
-30 14 102 73 186
-31 15 48 118 162
-32 187 4 16 54
-33 145 37 17 40
-34 91 39 51 19
-35 25 81 74 119
-36 133 59 52 120
-37 33 50 138 75
-38 90 28 74 76
-39 77 121 34 136
-40 33 66 78 122
-41 79 123 70 148
-42 90 80 124 152
-43 133 81 125 85
-44 134 47 49 126
-45 80 82 127 138
-46 83 128 183 8
-47 11 44 116 175
-48 79 84 95 31
-49 44 78 50 85
-50 37 49 137 129
-51 34 191 95 130
-52 36 16 72 86
-53 81 6 128 185
-54 165 7 32 131
-55 132 159 9 163
-56 133 166 24 10
-57 11 110 146 142
-58 12 134 147 160
-59 88 13 36 69
-60 167 14 182 109
-61 156 135 15 164
-62 125 136 16 170
-63 67 168 137 17
-64 169 138 18 161
-65 145 170 139 19
-66 99 12 40 20
-67 177 70 63 21
-68 22 165 71 106
-69 23 91 59 153
-70 67 15 26 41
-71 68 5 27 87
-72 154 189 29 52
-73 110 18 30 96
-74 166 35 38 120
-75 37 158 140 151
-76 155 38 98 109
-77 39 171 107 152
-78 100 49 170 40
-79 168 48 41 129
-80 45 93 42 98
-81 35 14 53 43
-82 1 45 192 105
-83 46 157 15 29
-84 135 48 94 19
-85 89 49 140 43
-86 111 101 92 52
-87 157 71 107 141
-88 111 59 149 172
-89 11 85 130 163
-90 134 38 42 97
-91 143 34 69 108
-92 144 4 182 86
-93 80 146 103 150
-94 136 84 173 131
-95 132 48 51 153
-96 99 112 145 73
-97 90 146 162 174
-98 144 188 80 76
-99 66 165 115 96
-100 121 78 147 175
-101 176 137 148 86
-102 177 149 30 108
-103 112 178 93 181
-104 113 148 192 21
-105 179 27 82 151
-106 68 180 28 152
-107 77 114 8 87
-108 3 91 102 185
-109 60 18 119 76
-110 57 73 118 184
-111 88 143 86 21
-112 2 103 96 142
-113 179 147 104 20
-114 22 167 107 175
-115 99 23 180 149
-116 47 26 162 184
-117 135 190 158 29
-118 110 190 181 31
-119 177 35 156 109
-120 188 36 182 74
-121 100 3 39 139
-122 134 180 40 172
-123 132 179 160 41
-124 189 183 42 141
-125 182 62 43 175
-126 44 176 189 146
-127 45 191 171 140
-128 177 46 53 164
-129 79 191 50 163
-130 89 51 185 186
-131 156 28 94 54
-132 55 123 5 95
-133 56 36 158 43
-134 44 122 90 58
-135 16 61 84 117
-136 22 39 94 62
-137 101 50 172 63
-138 45 155 37 64
-139 121 178 20 65
-140 6 127 85 75
-141 13 124 180 87
-142 187 57 112 159
-143 111 188 178 91
-144 92 192 161 98
-145 33 190 96 65
-146 57 93 126 97
-147 100 58 113 26
-148 101 104 41 9
-149 88 102 115 17
-150 154 1 93 183
-151 169 105 75 10
-152 77 106 173 42
-153 166 69 95 174
-154 187 72 150 164
-155 168 138 173 76
-156 168 61 119 131
-157 169 83 184 87
-158 133 170 117 75
-159 55 165 142 186
-160 166 123 58 162
-161 144 167 27 64
-162 116 160 31 97
-163 55 176 89 129
-164 154 61 7 128
-165 99 68 159 54
-166 56 160 74 153
-167 114 60 161 184
-168 155 79 156 63
-169 157 190 151 64
-170 78 158 62 65
-171 77 127 183 185
-172 88 122 189 137
-173 155 191 94 152
-174 188 181 97 153
-175 100 47 114 125
-176 187 101 126 163
-177 67 102 128 119
-178 143 103 192 139
-179 24 123 113 105
-180 122 115 106 141
-181 103 19 118 174
-182 92 125 60 120
-183 46 124 171 150
-184 110 167 157 116
-185 171 53 108 130
-186 23 159 30 130
-187 154 176 32 142
-188 143 174 98 120
-189 124 126 72 172
-190 145 169 117 118
-191 127 51 129 173
-192 144 178 82 104
0

**************