C4graphGraph forms for C4 [ 192, 119 ] = UG(ATD[192,205])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 119 ] = UG(ATD[192,205]).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {50, 51}, {146, 147}, {112, 114}, {188, 190}, {113, 115}, {1, 2}, {16, 19}, {76, 79}, {35, 39}, {81, 85}, {2, 7}, {75, 78}, {82, 87}, {40, 46}, {1, 6}, {27, 28}, {116, 124}, {100, 109}, {128, 137}, {160, 170}, {3, 8}, {178, 185}, {160, 171}, {51, 56}, {48, 59}, {33, 45}, {179, 191}, {163, 175}, {4, 9}, {68, 74}, {85, 91}, {5, 10}, {183, 184}, {129, 145}, {133, 149}, {96, 113}, {75, 89}, {96, 114}, {136, 154}, {38, 53}, {41, 58}, {161, 181}, {2, 23}, {165, 176}, {163, 182}, {73, 92}, {10, 31}, {8, 29}, {104, 125}, {107, 126}, {138, 159}, {141, 155}, {175, 185}, {168, 190}, {167, 177}, {9, 30}, {11, 28}, {131, 148}, {137, 158}, {99, 123}, {174, 182}, {13, 20}, {46, 55}, {110, 116}, {166, 188}, {3, 24}, {168, 179}, {7, 28}, {130, 153}, {132, 159}, {4, 25}, {169, 180}, {41, 52}, {37, 56}, {6, 27}, {77, 80}, {64, 94}, {164, 186}, {162, 188}, {3, 28}, {5, 26}, {102, 121}, {82, 114}, {153, 185}, {86, 118}, {87, 119}, {144, 176}, {18, 51}, {156, 189}, {135, 166}, {73, 107}, {81, 115}, {83, 112}, {91, 120}, {72, 108}, {16, 54}, {70, 110}, {157, 181}, {136, 160}, {6, 47}, {11, 32}, {14, 34}, {15, 35}, {12, 33}, {152, 181}, {71, 106}, {76, 97}, {135, 170}, {65, 111}, {77, 98}, {146, 189}, {9, 57}, {67, 115}, {27, 43}, {64, 113}, {90, 107}, {140, 189}, {66, 112}, {158, 172}, {141, 191}, {20, 39}, {158, 173}, {146, 161}, {10, 62}, {18, 38}, {17, 37}, {16, 36}, {11, 63}, {8, 61}, {141, 184}, {142, 187}, {143, 186}, {21, 35}, {152, 174}, {84, 98}, {154, 173}, {88, 97}, {134, 191}, {142, 183}, {7, 60}, {11, 48}, {6, 59}, {29, 32}, {21, 40}, {18, 47}, {131, 190}, {90, 100}, {140, 178}, {22, 41}, {151, 168}, {150, 169}, {130, 189}, {44, 108}, {58, 122}, {42, 107}, {52, 117}, {12, 78}, {13, 79}, {17, 84}, {34, 103}, {133, 192}, {3, 74}, {19, 88}, {12, 64}, {15, 67}, {14, 66}, {13, 65}, {17, 92}, {15, 65}, {40, 102}, {31, 80}, {56, 119}, {30, 79}, {62, 111}, {36, 118}, {49, 99}, {13, 94}, {54, 101}, {29, 78}, {24, 75}, {20, 71}, {9, 93}, {17, 68}, {25, 76}, {19, 70}, {47, 121}, {50, 100}, {18, 69}, {26, 77}, {37, 121}, {38, 122}, {21, 72}, {41, 116}, {23, 74}, {14, 80}, {5, 90}, {22, 73}, {61, 93}, {14, 111}, {22, 114}, {43, 79}, {42, 78}, {27, 127}, {30, 123}, {49, 84}, {24, 126}, {25, 127}, {2, 101}, {57, 94}, {1, 105}, {48, 88}, {20, 124}, {16, 120}, {23, 125}, {55, 93}, {54, 92}, {51, 89}, {5, 110}, {53, 88}, {52, 90}, {53, 91}, {23, 103}, {36, 84}, {35, 83}, {34, 82}, {33, 81}, {26, 106}, {25, 105}, {24, 104}, {39, 86}, {1, 115}, {180, 192}, {48, 69}, {50, 68}, {49, 70}, {186, 192}, {44, 87}, {44, 80}, {43, 86}, {22, 104}, {21, 106}, {42, 85}, {31, 154}, {50, 183}, {8, 143}, {49, 182}, {59, 176}, {19, 157}, {63, 177}, {62, 176}, {4, 139}, {7, 150}, {58, 171}, {10, 155}, {26, 128}, {63, 165}, {12, 144}, {31, 131}, {30, 130}, {29, 129}, {61, 163}, {58, 165}, {59, 164}, {55, 151}, {53, 148}, {56, 153}, {4, 166}, {57, 155}, {43, 137}, {42, 136}, {39, 132}, {52, 151}, {32, 132}, {60, 152}, {34, 134}, {33, 133}, {46, 139}, {44, 138}, {32, 137}, {45, 135}, {45, 129}, {61, 144}, {63, 145}, {40, 135}, {60, 147}, {37, 149}, {62, 143}, {45, 159}, {60, 143}, {36, 145}, {57, 142}, {38, 156}, {55, 141}, {54, 140}, {15, 178}, {46, 147}, {83, 147}, {113, 177}, {105, 170}, {93, 152}, {121, 188}, {74, 140}, {98, 164}, {106, 172}, {120, 190}, {101, 173}, {96, 169}, {110, 167}, {95, 149}, {101, 175}, {89, 148}, {118, 187}, {109, 162}, {117, 186}, {123, 171}, {67, 146}, {66, 144}, {112, 162}, {119, 165}, {127, 172}, {126, 170}, {67, 150}, {72, 157}, {109, 187}, {116, 172}, {97, 184}, {99, 185}, {71, 156}, {124, 160}, {102, 187}, {122, 167}, {95, 129}, {111, 142}, {102, 132}, {125, 159}, {65, 162}, {69, 166}, {92, 191}, {117, 150}, {118, 149}, {103, 131}, {68, 161}, {108, 139}, {122, 157}, {99, 139}, {75, 161}, {119, 156}, {105, 133}, {108, 128}, {86, 184}, {104, 134}, {117, 155}, {47, 192}, {97, 145}, {123, 138}, {64, 178}, {71, 181}, {70, 180}, {66, 177}, {87, 164}, {91, 175}, {126, 138}, {69, 179}, {95, 169}, {89, 174}, {96, 151}, {127, 136}, {95, 167}, {77, 180}, {82, 171}, {103, 158}, {109, 148}, {83, 168}, {85, 174}, {98, 153}, {81, 173}, {94, 163}, {125, 128}, {72, 182}, {73, 183}, {100, 154}, {120, 134}, {124, 130}, {76, 179} }>;

(II) A more general form is to represent the graph as the orbit of {50, 51} under the group generated by the following permutations:

a: (2, 115)(3, 12)(4, 18)(6, 105)(7, 81)(8, 78)(9, 51)(10, 90)(11, 45)(13, 17)(14, 22)(15, 54)(16, 35)(19, 21)(20, 84)(23, 113)(24, 144)(25, 47)(26, 110)(27, 133)(28, 33)(30, 56)(31, 52)(32, 129)(34, 114)(36, 39)(37, 79)(38, 139)(40, 88)(41, 80)(42, 143)(43, 149)(44, 58)(46, 53)(48, 135)(49, 71)(50, 57)(55, 148)(59, 170)(60, 85)(61, 75)(62, 107)(63, 159)(64, 74)(65, 92)(66, 104)(67, 101)(68, 94)(69, 166)(70, 106)(72, 157)(73, 111)(76, 121)(77, 116)(83, 120)(86, 118)(87, 171)(89, 93)(91, 147)(95, 137)(96, 103)(97, 102)(98, 124)(99, 156)(100, 155)(108, 122)(109, 141)(112, 134)(117, 154)(119, 123)(125, 177)(126, 176)(127, 192)(128, 167)(130, 153)(131, 151)(132, 145)(136, 186)(138, 165)(140, 178)(142, 183)(146, 175)(150, 173)(152, 174)(158, 169)(160, 164)(161, 163)(162, 191)(168, 190)(172, 180)(179, 188)(181, 182)(184, 187)(185, 189)
b: (2, 6)(3, 11)(4, 15)(7, 27)(8, 32)(9, 35)(10, 26)(12, 45)(13, 46)(14, 44)(16, 51)(17, 53)(18, 54)(19, 50)(20, 55)(21, 57)(22, 58)(23, 59)(24, 63)(25, 67)(30, 83)(31, 77)(34, 87)(36, 89)(37, 91)(38, 92)(39, 93)(40, 94)(42, 95)(43, 60)(47, 101)(48, 74)(49, 109)(52, 116)(56, 120)(61, 132)(62, 128)(64, 135)(65, 139)(66, 138)(68, 88)(69, 140)(70, 100)(71, 141)(72, 142)(73, 122)(75, 145)(76, 146)(78, 129)(79, 147)(81, 133)(84, 148)(85, 149)(86, 152)(90, 110)(96, 160)(97, 161)(98, 131)(99, 162)(102, 163)(103, 164)(104, 165)(105, 115)(106, 155)(107, 167)(108, 111)(112, 123)(113, 170)(114, 171)(117, 172)(118, 174)(119, 134)(121, 175)(124, 151)(125, 176)(126, 177)(127, 150)(130, 168)(136, 169)(137, 143)(144, 159)(153, 190)(154, 180)(156, 191)(157, 183)(158, 186)(166, 178)(173, 192)(179, 189)(181, 184)(182, 187)(185, 188)
c: (1, 2, 7, 28, 3, 8, 29, 78, 12, 33, 81, 115)(4, 16, 52, 79, 17, 10, 39, 51, 14, 40, 53, 114)(5, 20, 56, 80, 21, 38, 82, 139, 19, 41, 30, 84)(6, 23, 60, 11, 24, 61, 129, 42, 64, 133, 173, 67)(9, 36, 90, 13, 37, 31, 35, 18, 34, 46, 88, 22)(15, 47, 103, 147, 48, 104, 93, 145, 107, 94, 149, 154)(25, 54, 117, 43, 68, 62, 132, 89, 66, 135, 91, 96)(26, 71, 119, 44, 72, 122, 171, 99, 70, 116, 130, 98)(27, 74, 143, 32, 75, 144, 45, 85, 113, 105, 101, 150)(49, 110, 124, 153, 77, 106, 156, 87, 108, 157, 58, 123)(50, 111, 102, 148, 112, 166, 120, 151, 76, 92, 155, 86)(55, 97, 73, 57, 118, 100, 65, 121, 131, 83, 69, 134)(59, 125, 152, 63, 126, 163, 95, 136, 178, 192, 158, 146)(109, 162, 188, 190, 168, 179, 191, 141, 184, 183, 142, 187)(127, 140, 186, 137, 161, 176, 159, 174, 177, 170, 175, 169)(128, 181, 165, 138, 182, 167, 160, 185, 180, 172, 189, 164)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 119 ]
192
-1 2 115 6 105
-2 1 23 101 7
-3 24 28 8 74
-4 166 25 139 9
-5 110 90 26 10
-6 1 47 59 27
-7 2 60 28 150
-8 143 3 61 29
-9 57 4 93 30
-10 155 5 62 31
-11 48 28 63 32
-12 33 78 144 64
-13 79 94 20 65
-14 66 34 111 80
-15 67 35 178 65
-16 36 19 54 120
-17 68 37 92 84
-18 47 69 38 51
-19 88 157 70 16
-20 13 124 71 39
-21 35 72 40 106
-22 114 104 73 41
-23 2 103 125 74
-24 3 104 126 75
-25 4 105 127 76
-26 77 5 106 128
-27 6 28 127 43
-28 11 3 27 7
-29 78 8 129 32
-30 79 123 9 130
-31 154 80 10 131
-32 11 132 137 29
-33 12 45 133 81
-34 134 14 103 82
-35 15 39 83 21
-36 145 16 84 118
-37 121 56 17 149
-38 122 156 18 53
-39 132 35 20 86
-40 46 102 135 21
-41 22 58 116 52
-42 78 136 85 107
-43 79 27 137 86
-44 80 138 108 87
-45 33 135 159 129
-46 55 147 40 139
-47 121 192 6 18
-48 11 88 69 59
-49 99 70 182 84
-50 100 68 51 183
-51 56 89 50 18
-52 90 117 41 151
-53 88 91 38 148
-54 101 92 16 140
-55 46 93 151 141
-56 37 51 119 153
-57 155 94 9 142
-58 165 122 171 41
-59 176 48 6 164
-60 143 147 7 152
-61 144 93 8 163
-62 143 176 111 10
-63 11 165 177 145
-64 12 178 113 94
-65 111 13 15 162
-66 144 177 112 14
-67 146 15 115 150
-68 17 50 161 74
-69 166 179 48 18
-70 110 180 49 19
-71 156 181 106 20
-72 157 182 108 21
-73 22 92 183 107
-74 23 68 3 140
-75 78 89 24 161
-76 79 25 179 97
-77 80 26 180 98
-78 12 29 42 75
-79 13 30 43 76
-80 44 77 14 31
-81 33 115 85 173
-82 34 114 171 87
-83 35 112 168 147
-84 36 49 17 98
-85 91 81 42 174
-86 39 118 184 43
-87 44 82 119 164
-88 48 19 53 97
-89 148 51 75 174
-90 100 5 52 107
-91 85 53 120 175
-92 191 17 73 54
-93 55 61 9 152
-94 13 57 64 163
-95 167 169 149 129
-96 113 114 169 151
-97 88 145 184 76
-98 77 84 153 164
-99 123 49 139 185
-100 154 90 50 109
-101 2 173 54 175
-102 121 132 187 40
-103 23 34 158 131
-104 22 24 134 125
-105 1 133 25 170
-106 26 71 172 21
-107 90 126 73 42
-108 44 72 128 139
-109 187 100 148 162
-110 167 70 5 116
-111 14 62 65 142
-112 66 114 83 162
-113 177 115 96 64
-114 22 112 82 96
-115 1 67 113 81
-116 110 124 172 41
-117 155 150 52 186
-118 187 36 149 86
-119 165 56 156 87
-120 134 91 190 16
-121 188 47 102 37
-122 167 58 157 38
-123 99 138 171 30
-124 116 160 20 130
-125 23 104 159 128
-126 24 170 138 107
-127 25 136 27 172
-128 26 125 137 108
-129 45 145 29 95
-130 189 124 30 153
-131 190 103 148 31
-132 102 159 39 32
-133 33 192 105 149
-134 34 191 104 120
-135 45 166 170 40
-136 154 127 160 42
-137 158 128 32 43
-138 44 123 126 159
-139 99 46 4 108
-140 178 189 74 54
-141 55 155 191 184
-142 187 111 57 183
-143 60 62 8 186
-144 66 176 12 61
-145 36 63 129 97
-146 67 189 147 161
-147 46 146 60 83
-148 89 53 109 131
-149 133 37 95 118
-150 67 169 7 117
-151 55 168 52 96
-152 60 93 181 174
-153 56 130 185 98
-154 100 136 173 31
-155 57 117 141 10
-156 189 38 71 119
-157 122 181 72 19
-158 103 137 172 173
-159 132 45 125 138
-160 124 136 170 171
-161 68 146 181 75
-162 188 112 65 109
-163 61 94 182 175
-164 59 87 98 186
-165 176 58 63 119
-166 188 69 135 4
-167 110 122 177 95
-168 179 190 83 151
-169 180 95 150 96
-170 135 126 105 160
-171 123 58 82 160
-172 158 116 127 106
-173 154 101 81 158
-174 89 182 85 152
-175 101 91 163 185
-176 165 144 59 62
-177 66 167 113 63
-178 15 140 64 185
-179 69 168 191 76
-180 77 70 169 192
-181 157 71 161 152
-182 49 72 163 174
-183 50 73 184 142
-184 183 86 97 141
-185 99 178 153 175
-186 143 192 117 164
-187 102 118 109 142
-188 121 166 190 162
-189 156 146 140 130
-190 188 168 120 131
-191 134 179 92 141
-192 133 47 180 186
0

**************