C4graphGraph forms for C4 [ 192, 128 ] = SDD(AMC(3,8,[5.5:5.2]))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 128 ] = SDD(AMC(3,8,[5.5:5.2])).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {96, 121}, {67, 103}, {92, 120}, {83, 119}, {73, 108}, {65, 102}, {67, 100}, {84, 125}, {67, 105}, {82, 127}, {65, 110}, {83, 99}, {67, 113}, {73, 123}, {64, 116}, {66, 119}, {90, 111}, {94, 104}, {70, 126}, {74, 115}, {72, 114}, {73, 116}, {90, 103}, {83, 110}, {87, 105}, {43, 106}, {49, 117}, {50, 118}, {46, 107}, {53, 112}, {58, 127}, {63, 122}, {62, 118}, {56, 113}, {55, 125}, {49, 124}, {61, 112}, {54, 120}, {47, 127}, {50, 98}, {53, 101}, {32, 113}, {44, 125}, {34, 115}, {36, 118}, {43, 121}, {41, 123}, {40, 122}, {37, 119}, {54, 100}, {33, 114}, {45, 126}, {46, 122}, {53, 97}, {42, 124}, {45, 123}, {35, 116}, {41, 126}, {50, 101}, {43, 114}, {52, 109}, {54, 111}, {49, 109}, {46, 115}, {53, 104}, {38, 120}, {39, 121}, {1, 97}, {4, 101}, {1, 99}, {6, 100}, {1, 98}, {12, 111}, {8, 107}, {2, 97}, {3, 103}, {17, 117}, {9, 108}, {25, 124}, {15, 106}, {13, 104}, {11, 110}, {4, 98}, {5, 99}, {1, 102}, {14, 105}, {10, 109}, {3, 100}, {2, 101}, {23, 127}, {6, 111}, {28, 117}, {20, 125}, {2, 104}, {3, 105}, {5, 110}, {21, 126}, {12, 103}, {7, 106}, {11, 102}, {31, 112}, {28, 108}, {2, 112}, {9, 123}, {8, 122}, {5, 119}, {4, 118}, {3, 113}, {7, 114}, {10, 124}, {30, 102}, {19, 106}, {8, 115}, {16, 107}, {30, 98}, {9, 116}, {30, 99}, {22, 107}, {17, 108}, {6, 120}, {7, 121}, {10, 117}, {30, 97}, {18, 109}, {45, 173}, {56, 184}, {57, 185}, {60, 188}, {32, 161}, {29, 159}, {40, 170}, {62, 188}, {63, 189}, {48, 179}, {52, 183}, {61, 190}, {20, 144}, {41, 173}, {39, 163}, {26, 158}, {58, 190}, {4, 129}, {35, 166}, {10, 143}, {8, 141}, {55, 178}, {23, 145}, {31, 153}, {25, 159}, {9, 142}, {60, 187}, {13, 133}, {27, 147}, {24, 144}, {15, 135}, {14, 134}, {51, 187}, {59, 179}, {19, 154}, {33, 168}, {23, 158}, {20, 157}, {58, 179}, {24, 146}, {37, 175}, {34, 168}, {33, 171}, {25, 147}, {7, 140}, {44, 167}, {37, 174}, {16, 155}, {6, 139}, {22, 155}, {18, 156}, {27, 149}, {26, 148}, {63, 177}, {78, 192}, {5, 138}, {58, 181}, {55, 167}, {80, 192}, {18, 131}, {47, 190}, {17, 131}, {38, 180}, {37, 183}, {42, 185}, {51, 160}, {19, 135}, {27, 143}, {51, 167}, {13, 152}, {40, 189}, {28, 137}, {15, 154}, {57, 172}, {60, 169}, {63, 170}, {29, 139}, {48, 166}, {14, 153}, {39, 176}, {16, 136}, {36, 188}, {32, 184}, {24, 128}, {17, 137}, {60, 164}, {21, 140}, {40, 177}, {38, 191}, {29, 132}, {27, 130}, {56, 161}, {31, 133}, {47, 181}, {12, 151}, {26, 129}, {21, 142}, {45, 182}, {57, 162}, {47, 179}, {57, 165}, {11, 150}, {39, 186}, {59, 166}, {22, 136}, {44, 178}, {28, 131}, {41, 182}, {22, 182}, {26, 186}, {25, 185}, {11, 170}, {31, 190}, {48, 145}, {38, 132}, {55, 149}, {46, 141}, {61, 153}, {18, 183}, {21, 176}, {16, 182}, {33, 135}, {32, 134}, {12, 171}, {43, 140}, {52, 156}, {15, 165}, {35, 137}, {34, 136}, {24, 178}, {59, 145}, {62, 148}, {20, 184}, {36, 148}, {48, 128}, {35, 146}, {51, 130}, {50, 129}, {23, 163}, {34, 151}, {42, 159}, {19, 165}, {52, 131}, {61, 133}, {13, 180}, {44, 149}, {42, 147}, {14, 181}, {59, 128}, {54, 139}, {49, 143}, {56, 134}, {29, 162}, {74, 136}, {82, 145}, {96, 163}, {95, 156}, {85, 150}, {75, 143}, {84, 144}, {68, 129}, {79, 138}, {94, 152}, {73, 142}, {95, 152}, {70, 142}, {88, 144}, {64, 137}, {84, 157}, {75, 130}, {70, 140}, {88, 146}, {71, 141}, {80, 154}, {86, 157}, {82, 158}, {90, 151}, {81, 159}, {87, 153}, {69, 138}, {72, 135}, {68, 148}, {96, 176}, {77, 156}, {87, 134}, {64, 146}, {78, 154}, {79, 155}, {77, 152}, {81, 132}, {65, 150}, {75, 147}, {92, 132}, {88, 128}, {83, 138}, {91, 130}, {68, 158}, {96, 186}, {71, 157}, {76, 150}, {81, 139}, {86, 141}, {94, 133}, {74, 151}, {69, 155}, {75, 149}, {72, 168}, {95, 191}, {91, 187}, {89, 185}, {79, 175}, {93, 188}, {74, 168}, {87, 181}, {78, 172}, {79, 173}, {72, 171}, {92, 191}, {77, 174}, {36, 192}, {64, 166}, {93, 187}, {71, 161}, {78, 169}, {86, 177}, {69, 173}, {92, 180}, {85, 189}, {76, 164}, {69, 175}, {94, 180}, {88, 178}, {65, 170}, {66, 174}, {84, 184}, {76, 160}, {66, 175}, {76, 189}, {95, 174}, {90, 171}, {85, 164}, {82, 163}, {77, 191}, {81, 162}, {93, 169}, {66, 183}, {89, 172}, {85, 160}, {70, 176}, {71, 177}, {86, 161}, {80, 169}, {93, 164}, {89, 162}, {91, 160}, {80, 172}, {91, 167}, {89, 165}, {62, 192}, {68, 186} }>;

(II) A more general form is to represent the graph as the orbit of {96, 121} under the group generated by the following permutations:

a: (16, 22)
b: (34, 74)
c: (13, 94)
d: (2, 53)
e: (31, 61)
f: (1, 2, 13, 77, 37, 5)(3, 25, 9, 8, 60, 23)(4, 31, 38, 18, 69, 11)(6, 10, 41, 40, 36, 47)(7, 20, 15, 24, 33, 44)(12, 27, 21, 71, 78, 48)(14, 29, 17, 16, 76, 26)(19, 88, 72, 55, 43, 84)(22, 85, 68, 87, 81, 28)(30, 53, 94, 95, 66, 83)(32, 57, 35, 34, 51, 39)(42, 73, 46, 93, 82, 67)(45, 63, 62, 58, 54, 49)(50, 61, 92, 52, 79, 65)(56, 89, 64, 74, 91, 96)(59, 90, 75, 70, 86, 80)(97, 104, 152, 174, 119, 99)(98, 112, 180, 156, 175, 110)(100, 124, 123, 122, 188, 127)(101, 133, 191, 183, 138, 102)(103, 147, 142, 141, 169, 145)(105, 159, 108, 107, 164, 158)(106, 144, 135, 178, 114, 125)(109, 173, 170, 118, 190, 120)(111, 143, 126, 177, 192, 179)(113, 185, 116, 115, 187, 163)(117, 182, 189, 148, 181, 139)(121, 184, 165, 146, 168, 167)(128, 171, 149, 140, 157, 154)(129, 153, 132, 131, 155, 150)(130, 176, 161, 172, 166, 151)(134, 162, 137, 136, 160, 186)
g: (3, 67)
h: (2, 4)(3, 7)(5, 11)(6, 15)(8, 16)(9, 20)(10, 27)(12, 33)(13, 36)(14, 39)(17, 44)(18, 51)(19, 54)(21, 32)(22, 46)(23, 47)(24, 35)(26, 31)(28, 55)(29, 57)(37, 76)(38, 78)(40, 69)(41, 71)(43, 67)(45, 86)(49, 75)(50, 53)(52, 91)(56, 70)(58, 82)(60, 77)(61, 68)(62, 94)(63, 79)(64, 88)(65, 83)(66, 85)(72, 90)(73, 84)(80, 92)(81, 89)(87, 96)(93, 95)(97, 98)(99, 102)(100, 106)(103, 114)(104, 118)(105, 121)(108, 125)(109, 130)(111, 135)(112, 129)(113, 140)(115, 136)(116, 144)(117, 149)(119, 150)(120, 154)(122, 155)(123, 157)(124, 147)(126, 161)(128, 166)(131, 167)(132, 172)(133, 148)(134, 176)(137, 178)(138, 170)(139, 165)(141, 182)(142, 184)(145, 179)(151, 168)(152, 188)(153, 186)(156, 187)(158, 190)(159, 185)(160, 183)(163, 181)(164, 174)(169, 191)(173, 177)(175, 189)(180, 192)
m: (20, 84)
n1: (18, 52)
a1: (38, 92)
b1: (26, 68)
c1: (15, 19)
d1: (7, 43)
e1: (21, 70)
f1: (69, 79)
g1: (10, 49)
h1: (60, 93)
m1: (44, 55)
n2: (24, 88)
a2: (14, 87)
b2: (5, 83)
c2: (48, 59)
d2: (40, 63)
e2: (57, 89)
f2: (6, 54)
g2: (33, 72)
h2: (78, 80)
m2: (32, 56)
n3: (9, 73)
a3: (35, 64)
b3: (36, 62)
c3: (4, 50)
d3: (51, 91)
e3: (25, 42)
f3: (27, 75)
g3: (8, 46)
h3: (29, 81)
m3: (71, 86)
n4: (41, 45)
a4: (77, 95)
b4: (2, 11)(3, 20)(4, 5)(6, 44)(7, 9)(8, 47)(10, 57)(12, 24)(13, 76)(14, 71)(15, 17)(16, 23)(18, 78)(19, 28)(22, 82)(26, 69)(27, 29)(31, 40)(33, 35)(34, 48)(36, 37)(38, 51)(39, 41)(43, 73)(45, 96)(46, 58)(49, 89)(50, 83)(52, 80)(53, 65)(54, 55)(59, 74)(60, 77)(61, 63)(62, 66)(64, 72)(67, 84)(68, 79)(75, 81)(85, 94)(86, 87)(88, 90)(91, 92)(93, 95)(97, 102)(98, 99)(100, 125)(101, 110)(103, 144)(104, 150)(105, 157)(106, 108)(107, 127)(109, 172)(111, 178)(112, 170)(113, 184)(114, 116)(115, 179)(117, 165)(118, 119)(120, 167)(121, 123)(122, 190)(124, 185)(126, 176)(128, 151)(129, 138)(130, 132)(131, 154)(133, 189)(134, 161)(135, 137)(136, 145)(139, 149)(140, 142)(141, 181)(143, 162)(146, 171)(147, 159)(148, 175)(152, 164)(153, 177)(155, 158)(156, 169)(160, 180)(163, 182)(166, 168)(173, 186)(174, 188)(183, 192)(187, 191)
c4: (47, 58)
d4: (76, 85)
e4: (39, 96)
f4: (11, 65)
g4: (17, 28)
h4: (23, 82)
m4: (37, 66)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 128 ]
192
-1 99 102 97 98
-2 101 112 104 97
-3 100 113 103 105
-4 101 118 129 98
-5 99 110 138 119
-6 100 111 139 120
-7 121 114 106 140
-8 122 115 107 141
-9 123 116 108 142
-10 143 124 117 109
-11 110 102 170 150
-12 111 103 171 151
-13 133 180 104 152
-14 134 181 105 153
-15 154 165 135 106
-16 155 136 182 107
-17 137 117 108 131
-18 156 183 109 131
-19 154 165 135 106
-20 144 157 125 184
-21 176 126 140 142
-22 155 136 182 107
-23 145 158 127 163
-24 144 178 146 128
-25 124 147 159 185
-26 158 148 129 186
-27 143 147 149 130
-28 137 117 108 131
-29 132 159 139 162
-30 99 102 97 98
-31 133 112 190 153
-32 134 113 161 184
-33 135 168 114 171
-34 168 136 115 151
-35 166 146 137 116
-36 188 148 192 118
-37 183 119 174 175
-38 132 180 191 120
-39 121 176 163 186
-40 122 177 189 170
-41 123 126 182 173
-42 124 147 159 185
-43 121 114 106 140
-44 167 178 125 149
-45 123 126 182 173
-46 122 115 107 141
-47 179 190 181 127
-48 166 145 179 128
-49 143 124 117 109
-50 101 118 129 98
-51 187 167 160 130
-52 156 183 109 131
-53 101 112 104 97
-54 100 111 139 120
-55 167 178 125 149
-56 134 113 161 184
-57 165 172 162 185
-58 179 190 181 127
-59 166 145 179 128
-60 187 188 169 164
-61 133 112 190 153
-62 188 148 192 118
-63 122 177 189 170
-64 166 146 137 116
-65 110 102 170 150
-66 183 119 174 175
-67 100 113 103 105
-68 158 148 129 186
-69 155 138 173 175
-70 176 126 140 142
-71 177 157 161 141
-72 135 168 114 171
-73 123 116 108 142
-74 168 136 115 151
-75 143 147 149 130
-76 189 160 150 164
-77 156 191 152 174
-78 154 169 192 172
-79 155 138 173 175
-80 154 169 192 172
-81 132 159 139 162
-82 145 158 127 163
-83 99 110 138 119
-84 144 157 125 184
-85 189 160 150 164
-86 177 157 161 141
-87 134 181 105 153
-88 144 178 146 128
-89 165 172 162 185
-90 111 103 171 151
-91 187 167 160 130
-92 132 180 191 120
-93 187 188 169 164
-94 133 180 104 152
-95 156 191 152 174
-96 121 176 163 186
-97 1 2 30 53
-98 1 4 50 30
-99 1 5 83 30
-100 67 3 6 54
-101 2 4 50 53
-102 11 1 30 65
-103 12 67 90 3
-104 2 13 94 53
-105 67 3 14 87
-106 15 7 19 43
-107 22 46 16 8
-108 17 28 73 9
-109 49 18 52 10
-110 11 5 83 65
-111 12 90 6 54
-112 2 61 31 53
-113 56 67 3 32
-114 33 72 7 43
-115 34 46 8 74
-116 35 73 9 64
-117 49 17 28 10
-118 36 4 50 62
-119 66 37 5 83
-120 92 38 6 54
-121 39 7 96 43
-122 46 40 8 63
-123 45 73 41 9
-124 25 49 42 10
-125 44 55 84 20
-126 45 70 41 21
-127 23 47 58 82
-128 88 24 48 59
-129 68 4 26 50
-130 91 27 51 75
-131 17 28 18 52
-132 81 92 38 29
-133 13 61 94 31
-134 56 14 32 87
-135 33 15 72 19
-136 22 34 16 74
-137 35 17 28 64
-138 79 69 5 83
-139 81 6 29 54
-140 70 7 21 43
-141 46 71 8 86
-142 70 73 9 21
-143 27 49 75 10
-144 88 24 84 20
-145 23 48 59 82
-146 88 24 35 64
-147 25 27 42 75
-148 68 36 26 62
-149 44 55 27 75
-150 11 85 65 76
-151 12 34 90 74
-152 77 13 94 95
-153 14 61 31 87
-154 78 80 15 19
-155 22 79 69 16
-156 77 18 95 52
-157 71 84 20 86
-158 23 68 26 82
-159 25 81 29 42
-160 91 51 85 76
-161 56 71 86 32
-162 89 57 81 29
-163 23 82 39 96
-164 60 93 85 76
-165 89 57 15 19
-166 35 48 59 64
-167 44 55 91 51
-168 33 34 72 74
-169 78 80 60 93
-170 11 40 63 65
-171 33 12 90 72
-172 78 89 57 80
-173 45 79 69 41
-174 66 77 37 95
-175 66 79 69 37
-176 70 39 96 21
-177 71 40 63 86
-178 44 55 88 24
-179 47 58 48 59
-180 13 92 38 94
-181 14 47 58 87
-182 22 45 16 41
-183 66 37 18 52
-184 56 84 20 32
-185 89 57 25 42
-186 68 26 39 96
-187 91 60 93 51
-188 36 60 93 62
-189 40 63 85 76
-190 47 58 61 31
-191 77 92 38 95
-192 78 36 80 62
0

**************