C4graphGraph forms for C4 [ 192, 131 ] = XI(Rmap(96,16){6,6|6}_8)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 131 ] = XI(Rmap(96,16){6,6|6}_8).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {94, 124}, {85, 113}, {84, 114}, {64, 103}, {81, 118}, {69, 108}, {86, 124}, {70, 109}, {64, 110}, {68, 107}, {74, 126}, {73, 113}, {70, 127}, {72, 114}, {81, 107}, {71, 123}, {54, 115}, {51, 117}, {43, 108}, {47, 104}, {51, 116}, {46, 103}, {38, 109}, {53, 123}, {58, 117}, {57, 104}, {44, 126}, {48, 100}, {45, 120}, {47, 122}, {57, 111}, {46, 121}, {39, 127}, {48, 105}, {36, 127}, {44, 119}, {32, 124}, {43, 119}, {34, 126}, {33, 125}, {43, 118}, {35, 125}, {38, 120}, {1, 97}, {3, 98}, {11, 106}, {9, 104}, {7, 102}, {5, 100}, {1, 99}, {18, 112}, {15, 109}, {14, 108}, {4, 102}, {1, 98}, {27, 120}, {23, 116}, {10, 105}, {6, 101}, {2, 97}, {1, 101}, {7, 99}, {3, 103}, {2, 102}, {22, 115}, {28, 121}, {2, 100}, {13, 107}, {4, 99}, {29, 122}, {21, 114}, {3, 106}, {16, 121}, {6, 108}, {12, 102}, {7, 109}, {2, 105}, {17, 122}, {4, 111}, {4, 104}, {19, 127}, {6, 106}, {3, 110}, {26, 119}, {25, 116}, {24, 117}, {16, 125}, {12, 97}, {5, 107}, {30, 112}, {21, 123}, {11, 101}, {8, 103}, {28, 115}, {25, 118}, {18, 125}, {17, 126}, {6, 119}, {19, 98}, {8, 121}, {28, 110}, {29, 111}, {5, 118}, {15, 124}, {9, 122}, {5, 112}, {20, 97}, {14, 123}, {20, 99}, {8, 113}, {19, 106}, {12, 117}, {10, 115}, {10, 112}, {31, 101}, {30, 100}, {9, 114}, {18, 105}, {13, 113}, {31, 98}, {16, 110}, {17, 111}, {7, 120}, {11, 116}, {34, 163}, {49, 176}, {56, 185}, {60, 189}, {21, 151}, {24, 154}, {54, 180}, {61, 191}, {32, 163}, {16, 148}, {20, 144}, {17, 149}, {19, 150}, {18, 148}, {15, 136}, {35, 171}, {8, 129}, {41, 160}, {36, 173}, {14, 135}, {12, 133}, {10, 131}, {32, 170}, {33, 171}, {9, 130}, {42, 161}, {13, 134}, {46, 162}, {55, 187}, {62, 178}, {63, 179}, {55, 186}, {60, 177}, {22, 152}, {34, 172}, {23, 153}, {52, 186}, {53, 187}, {78, 192}, {11, 132}, {30, 142}, {31, 143}, {29, 140}, {53, 164}, {59, 170}, {61, 172}, {63, 174}, {36, 182}, {59, 169}, {63, 173}, {24, 139}, {83, 192}, {27, 136}, {20, 128}, {48, 164}, {62, 171}, {26, 140}, {35, 181}, {27, 141}, {46, 184}, {47, 185}, {56, 175}, {60, 171}, {54, 174}, {22, 143}, {45, 183}, {90, 192}, {41, 178}, {13, 145}, {15, 147}, {14, 146}, {23, 138}, {93, 192}, {26, 135}, {25, 132}, {50, 175}, {56, 166}, {58, 164}, {62, 160}, {22, 137}, {40, 183}, {28, 131}, {25, 134}, {55, 168}, {33, 128}, {47, 142}, {49, 144}, {48, 146}, {61, 159}, {52, 144}, {37, 128}, {45, 136}, {39, 130}, {38, 129}, {57, 145}, {58, 146}, {59, 147}, {60, 148}, {61, 149}, {32, 137}, {51, 154}, {63, 150}, {49, 155}, {51, 153}, {62, 148}, {34, 137}, {44, 135}, {40, 131}, {41, 132}, {43, 134}, {54, 152}, {42, 133}, {52, 155}, {39, 151}, {42, 154}, {41, 153}, {40, 152}, {21, 164}, {39, 150}, {23, 165}, {45, 159}, {27, 168}, {59, 142}, {42, 156}, {56, 142}, {30, 169}, {40, 159}, {38, 145}, {37, 157}, {52, 140}, {53, 141}, {57, 129}, {36, 157}, {44, 149}, {50, 139}, {29, 167}, {33, 155}, {37, 158}, {49, 138}, {50, 137}, {55, 140}, {31, 163}, {26, 167}, {50, 143}, {24, 166}, {37, 155}, {35, 156}, {58, 133}, {95, 158}, {64, 130}, {95, 157}, {81, 147}, {65, 131}, {68, 134}, {69, 135}, {76, 143}, {95, 156}, {94, 157}, {83, 150}, {96, 165}, {66, 132}, {96, 166}, {67, 133}, {82, 149}, {65, 141}, {76, 128}, {94, 147}, {70, 136}, {82, 156}, {88, 139}, {85, 129}, {71, 146}, {75, 158}, {84, 130}, {92, 138}, {64, 151}, {73, 145}, {65, 152}, {67, 154}, {71, 158}, {87, 141}, {66, 153}, {67, 159}, {76, 144}, {72, 151}, {93, 189}, {79, 174}, {83, 177}, {91, 184}, {86, 178}, {93, 185}, {91, 191}, {85, 176}, {90, 191}, {74, 172}, {69, 162}, {92, 187}, {91, 188}, {90, 189}, {72, 160}, {94, 182}, {86, 190}, {73, 161}, {77, 165}, {79, 167}, {80, 184}, {65, 168}, {87, 190}, {75, 162}, {78, 167}, {80, 185}, {89, 179}, {96, 138}, {95, 181}, {70, 173}, {96, 139}, {80, 188}, {92, 176}, {91, 183}, {89, 181}, {88, 180}, {87, 187}, {89, 180}, {90, 183}, {76, 163}, {77, 162}, {68, 180}, {85, 165}, {71, 182}, {84, 166}, {66, 177}, {82, 161}, {74, 190}, {93, 169}, {92, 168}, {78, 186}, {77, 184}, {79, 186}, {72, 190}, {88, 174}, {68, 179}, {88, 175}, {87, 160}, {75, 188}, {74, 178}, {89, 161}, {69, 188}, {80, 169}, {81, 170}, {84, 175}, {67, 191}, {86, 170}, {73, 181}, {79, 179}, {75, 182}, {77, 176}, {82, 172}, {83, 173}, {66, 189}, {78, 177} }>;

(II) A more general form is to represent the graph as the orbit of {94, 124} under the group generated by the following permutations:

a: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 22)(16, 25)(17, 27)(19, 30)(21, 32)(23, 35)(24, 37)(26, 40)(28, 43)(29, 45)(31, 48)(33, 51)(34, 53)(36, 56)(38, 57)(39, 59)(41, 62)(42, 49)(44, 65)(46, 68)(47, 70)(50, 71)(52, 67)(54, 69)(55, 61)(58, 76)(60, 66)(63, 80)(64, 81)(72, 86)(73, 85)(74, 87)(75, 88)(77, 89)(78, 90)(79, 91)(82, 92)(83, 93)(84, 94)(95, 96)(98, 100)(99, 102)(101, 105)(103, 107)(104, 109)(106, 112)(108, 115)(110, 118)(111, 120)(114, 124)(116, 125)(117, 128)(119, 131)(121, 134)(122, 136)(123, 137)(126, 141)(127, 142)(129, 145)(130, 147)(132, 148)(133, 144)(135, 152)(138, 156)(139, 158)(140, 159)(143, 146)(149, 168)(150, 169)(151, 170)(153, 171)(154, 155)(157, 166)(160, 178)(161, 176)(162, 180)(163, 164)(165, 181)(167, 183)(172, 187)(173, 185)(174, 188)(175, 182)(177, 189)(179, 184)(186, 191)
b: (2, 4)(3, 6)(5, 9)(7, 12)(8, 14)(10, 17)(11, 19)(13, 21)(15, 24)(16, 26)(18, 29)(22, 34)(23, 36)(25, 39)(27, 42)(28, 44)(30, 47)(32, 50)(33, 52)(35, 55)(37, 49)(38, 58)(40, 61)(41, 63)(43, 64)(45, 67)(46, 69)(48, 57)(51, 70)(53, 73)(54, 74)(56, 59)(60, 78)(62, 79)(65, 82)(66, 83)(68, 72)(71, 85)(75, 77)(81, 84)(86, 88)(87, 89)(92, 95)(94, 96)(97, 99)(98, 101)(100, 104)(103, 108)(105, 111)(107, 114)(109, 117)(110, 119)(112, 122)(113, 123)(115, 126)(116, 127)(118, 130)(120, 133)(121, 135)(124, 139)(125, 140)(128, 144)(129, 146)(131, 149)(132, 150)(134, 151)(136, 154)(138, 157)(141, 161)(143, 163)(145, 164)(147, 166)(148, 167)(152, 172)(153, 173)(156, 168)(158, 176)(160, 179)(165, 182)(169, 185)(170, 175)(171, 186)(174, 178)(180, 190)(181, 187)(183, 191)(184, 188)(189, 192)
c: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(15, 23)(17, 26)(18, 28)(20, 31)(22, 33)(24, 36)(25, 38)(27, 41)(29, 44)(30, 46)(32, 49)(34, 52)(35, 54)(37, 50)(39, 58)(40, 60)(42, 63)(43, 57)(45, 66)(47, 69)(48, 64)(51, 70)(53, 72)(55, 74)(56, 75)(59, 77)(61, 78)(62, 65)(67, 83)(68, 73)(71, 84)(79, 82)(81, 85)(86, 92)(88, 95)(91, 93)(94, 96)(97, 98)(99, 101)(100, 103)(102, 106)(104, 108)(105, 110)(107, 113)(109, 116)(111, 119)(112, 121)(114, 123)(115, 125)(117, 127)(118, 129)(120, 132)(122, 135)(124, 138)(126, 140)(128, 143)(130, 146)(131, 148)(133, 150)(134, 145)(136, 153)(137, 155)(139, 157)(141, 160)(142, 162)(144, 163)(147, 165)(149, 167)(151, 164)(152, 171)(154, 173)(156, 174)(158, 175)(159, 177)(161, 179)(166, 182)(168, 178)(169, 184)(170, 176)(172, 186)(180, 181)(183, 189)(185, 188)(187, 190)(191, 192)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 131 ]
192
-1 99 101 97 98
-2 100 102 105 97
-3 110 103 106 98
-4 99 111 102 104
-5 100 112 107 118
-6 101 106 108 119
-7 99 102 109 120
-8 121 113 103 129
-9 122 114 104 130
-10 112 115 105 131
-11 132 101 116 106
-12 133 102 117 97
-13 134 145 113 107
-14 123 135 146 108
-15 124 136 147 109
-16 110 121 125 148
-17 111 122 126 149
-18 112 125 148 105
-19 127 106 150 98
-20 99 144 128 97
-21 123 114 151 164
-22 143 115 137 152
-23 165 116 138 153
-24 154 166 117 139
-25 132 134 116 118
-26 167 135 140 119
-27 168 136 141 120
-28 110 121 115 131
-29 111 122 167 140
-30 100 112 169 142
-31 143 101 163 98
-32 124 137 170 163
-33 155 125 171 128
-34 126 137 172 163
-35 156 125 181 171
-36 157 127 182 173
-37 155 157 158 128
-38 145 129 109 120
-39 127 150 151 130
-40 159 183 152 131
-41 132 178 160 153
-42 154 133 156 161
-43 134 118 108 119
-44 135 126 149 119
-45 136 159 183 120
-46 121 103 162 184
-47 122 104 185 142
-48 100 146 105 164
-49 176 144 155 138
-50 143 137 139 175
-51 154 116 117 153
-52 144 155 140 186
-53 187 123 141 164
-54 180 115 152 174
-55 187 168 140 186
-56 166 185 142 175
-57 111 145 104 129
-58 133 146 117 164
-59 147 169 170 142
-60 177 189 148 171
-61 191 159 149 172
-62 178 148 160 171
-63 179 150 173 174
-64 110 103 151 130
-65 168 141 152 131
-66 132 177 189 153
-67 154 133 191 159
-68 134 179 180 107
-69 188 135 162 108
-70 136 127 173 109
-71 123 146 158 182
-72 190 114 160 151
-73 145 113 181 161
-74 178 190 126 172
-75 188 158 182 162
-76 143 144 128 163
-77 165 176 162 184
-78 177 167 192 186
-79 167 179 174 186
-80 188 169 184 185
-81 147 170 107 118
-82 156 149 161 172
-83 177 192 150 173
-84 166 114 130 175
-85 165 176 113 129
-86 178 124 190 170
-87 187 190 160 141
-88 180 139 174 175
-89 179 180 181 161
-90 189 191 192 183
-91 188 191 183 184
-92 176 187 168 138
-93 189 169 192 185
-94 124 157 147 182
-95 156 157 158 181
-96 165 166 138 139
-97 1 12 2 20
-98 1 3 19 31
-99 1 4 7 20
-100 2 48 5 30
-101 11 1 6 31
-102 12 2 4 7
-103 46 3 8 64
-104 57 47 4 9
-105 2 48 18 10
-106 11 3 6 19
-107 13 68 81 5
-108 14 69 6 43
-109 15 70 38 7
-110 3 16 28 64
-111 57 4 17 29
-112 5 18 30 10
-113 13 73 8 85
-114 72 84 9 21
-115 22 28 10 54
-116 11 23 25 51
-117 12 24 58 51
-118 25 81 5 43
-119 44 26 6 43
-120 45 27 38 7
-121 46 16 28 8
-122 47 17 29 9
-123 14 71 53 21
-124 15 94 86 32
-125 33 35 16 18
-126 44 34 17 74
-127 36 70 39 19
-128 33 37 20 76
-129 57 38 8 85
-130 39 84 9 64
-131 28 40 10 65
-132 11 66 25 41
-133 12 67 58 42
-134 13 68 25 43
-135 44 14 69 26
-136 45 15 70 27
-137 22 34 50 32
-138 23 92 49 96
-139 88 24 50 96
-140 55 26 29 52
-141 27 53 65 87
-142 56 47 59 30
-143 22 50 31 76
-144 49 52 20 76
-145 13 57 38 73
-146 14 58 48 71
-147 15 59 81 94
-148 16 60 18 62
-149 44 82 17 61
-150 39 83 19 63
-151 39 72 64 21
-152 22 40 54 65
-153 66 23 51 41
-154 67 24 51 42
-155 33 37 49 52
-156 35 82 95 42
-157 36 37 94 95
-158 37 71 95 75
-159 45 67 61 40
-160 72 62 41 87
-161 89 82 73 42
-162 77 46 69 75
-163 34 31 32 76
-164 58 48 53 21
-165 77 23 85 96
-166 56 24 84 96
-167 78 79 26 29
-168 55 92 27 65
-169 80 59 93 30
-170 59 81 86 32
-171 33 35 60 62
-172 34 82 61 74
-173 36 70 83 63
-174 88 79 63 54
-175 88 56 50 84
-176 77 92 49 85
-177 66 78 60 83
-178 62 41 74 86
-179 89 68 79 63
-180 88 89 68 54
-181 89 35 73 95
-182 36 71 94 75
-183 45 90 91 40
-184 77 46 80 91
-185 56 47 80 93
-186 55 78 79 52
-187 55 92 53 87
-188 69 80 91 75
-189 66 90 60 93
-190 72 74 86 87
-191 67 90 91 61
-192 78 90 93 83
0

**************