C4graphGraph forms for C4 [ 192, 134 ] = SDD(W(24,2))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 134 ] = SDD(W(24,2)).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {71, 102}, {72, 106}, {71, 99}, {90, 126}, {71, 98}, {71, 97}, {80, 123}, {72, 100}, {80, 124}, {81, 125}, {69, 107}, {80, 108}, {69, 123}, {72, 118}, {50, 115}, {52, 117}, {39, 101}, {46, 109}, {47, 106}, {60, 121}, {39, 97}, {54, 112}, {33, 102}, {39, 111}, {55, 126}, {50, 121}, {46, 98}, {56, 117}, {39, 104}, {57, 118}, {47, 127}, {54, 103}, {54, 100}, {38, 114}, {52, 99}, {47, 119}, {32, 121}, {46, 116}, {52, 110}, {33, 122}, {35, 126}, {47, 113}, {50, 108}, {34, 125}, {48, 111}, {54, 105}, {1, 97}, {1, 99}, {26, 120}, {6, 100}, {1, 98}, {31, 124}, {18, 113}, {8, 107}, {2, 97}, {3, 103}, {20, 112}, {15, 107}, {10, 110}, {9, 108}, {13, 104}, {4, 98}, {5, 99}, {1, 102}, {31, 120}, {24, 127}, {14, 105}, {10, 109}, {3, 100}, {2, 101}, {24, 112}, {26, 114}, {4, 109}, {30, 119}, {28, 117}, {26, 115}, {17, 120}, {2, 104}, {3, 105}, {5, 110}, {29, 118}, {25, 114}, {20, 127}, {16, 123}, {12, 103}, {6, 106}, {22, 122}, {16, 124}, {2, 111}, {19, 126}, {17, 124}, {11, 102}, {7, 106}, {10, 101}, {27, 116}, {18, 125}, {4, 116}, {10, 122}, {9, 121}, {8, 120}, {7, 119}, {6, 118}, {5, 117}, {11, 122}, {26, 107}, {12, 125}, {3, 112}, {27, 104}, {22, 101}, {15, 123}, {18, 103}, {7, 113}, {30, 105}, {7, 127}, {23, 111}, {22, 110}, {13, 116}, {14, 119}, {8, 114}, {9, 115}, {8, 115}, {22, 109}, {16, 108}, {12, 113}, {28, 156}, {42, 170}, {41, 169}, {63, 191}, {27, 154}, {44, 173}, {11, 137}, {15, 140}, {48, 179}, {35, 167}, {63, 187}, {4, 129}, {30, 155}, {24, 157}, {21, 144}, {14, 139}, {6, 131}, {51, 182}, {32, 166}, {38, 160}, {45, 171}, {62, 184}, {5, 130}, {34, 165}, {29, 154}, {17, 150}, {13, 138}, {60, 180}, {20, 157}, {40, 161}, {31, 150}, {45, 164}, {12, 134}, {25, 147}, {57, 179}, {21, 158}, {41, 162}, {40, 163}, {61, 177}, {76, 192}, {9, 132}, {41, 164}, {37, 168}, {53, 184}, {28, 147}, {44, 163}, {58, 181}, {27, 138}, {49, 160}, {11, 153}, {82, 192}, {31, 141}, {15, 156}, {18, 134}, {37, 177}, {32, 180}, {19, 135}, {58, 174}, {14, 155}, {30, 139}, {28, 137}, {21, 128}, {16, 133}, {48, 165}, {61, 168}, {23, 129}, {35, 181}, {13, 154}, {24, 143}, {63, 168}, {51, 170}, {62, 167}, {60, 166}, {19, 136}, {29, 134}, {20, 143}, {53, 174}, {59, 160}, {17, 141}, {92, 192}, {42, 182}, {25, 133}, {19, 142}, {21, 136}, {45, 178}, {95, 192}, {34, 131}, {59, 153}, {38, 133}, {43, 136}, {57, 154}, {23, 179}, {36, 128}, {56, 156}, {51, 150}, {62, 155}, {58, 157}, {33, 137}, {34, 138}, {49, 153}, {53, 159}, {37, 142}, {43, 128}, {56, 147}, {32, 141}, {29, 179}, {42, 132}, {46, 129}, {61, 146}, {63, 144}, {55, 135}, {48, 129}, {56, 137}, {58, 139}, {60, 141}, {62, 143}, {23, 165}, {35, 145}, {53, 135}, {49, 130}, {61, 142}, {44, 152}, {36, 145}, {43, 158}, {38, 147}, {45, 152}, {36, 146}, {50, 132}, {52, 130}, {37, 146}, {51, 132}, {59, 140}, {33, 153}, {25, 160}, {55, 142}, {59, 130}, {36, 159}, {44, 151}, {43, 144}, {40, 148}, {42, 150}, {41, 149}, {40, 149}, {49, 140}, {55, 136}, {57, 134}, {75, 139}, {85, 149}, {70, 135}, {85, 148}, {84, 151}, {87, 148}, {69, 140}, {72, 131}, {90, 145}, {82, 158}, {86, 155}, {78, 128}, {96, 175}, {78, 159}, {76, 158}, {81, 131}, {64, 148}, {66, 151}, {77, 152}, {80, 133}, {65, 151}, {67, 149}, {75, 157}, {69, 156}, {86, 143}, {70, 159}, {66, 152}, {81, 138}, {78, 146}, {96, 188}, {96, 189}, {78, 145}, {96, 191}, {79, 144}, {94, 190}, {66, 163}, {95, 190}, {67, 162}, {73, 171}, {92, 190}, {65, 162}, {94, 189}, {89, 186}, {87, 180}, {84, 183}, {74, 169}, {82, 177}, {83, 183}, {95, 187}, {94, 186}, {93, 185}, {89, 189}, {88, 188}, {75, 174}, {92, 185}, {88, 189}, {83, 182}, {73, 175}, {95, 185}, {77, 171}, {67, 164}, {92, 187}, {89, 190}, {88, 191}, {74, 173}, {79, 168}, {70, 174}, {68, 173}, {77, 164}, {64, 170}, {67, 169}, {89, 178}, {64, 172}, {94, 178}, {91, 183}, {65, 172}, {93, 176}, {91, 182}, {68, 169}, {82, 188}, {86, 184}, {66, 173}, {90, 181}, {73, 185}, {74, 186}, {76, 188}, {79, 191}, {86, 167}, {83, 161}, {93, 175}, {64, 180}, {85, 161}, {68, 176}, {79, 187}, {81, 165}, {83, 166}, {65, 183}, {93, 171}, {85, 163}, {84, 162}, {88, 175}, {84, 172}, {73, 176}, {74, 176}, {91, 161}, {87, 172}, {76, 177}, {91, 166}, {90, 167}, {87, 170}, {68, 186}, {70, 184}, {75, 181}, {77, 178} }>;

(II) A more general form is to represent the graph as the orbit of {71, 102} under the group generated by the following permutations:

a: (19, 36)(55, 78)(126, 145)(128, 136)(135, 159)(142, 146)
b: (88, 92)(95, 96)(175, 185)(187, 191)(188, 192)(189, 190)
c: (6, 12)(18, 72)(100, 103)(106, 113)(118, 134)(125, 131)
d: (64, 83)(87, 91)(148, 161)(166, 180)(170, 182)(172, 183)
e: (68, 74)
f: (89, 94)
g: (17, 31)
h: (53, 70)
m: (32, 42)(51, 60)(121, 132)(141, 150)(166, 182)(170, 180)
n1: (40, 65)(84, 85)(148, 172)(149, 162)(151, 163)(161, 183)
a1: (10, 22)
b1: (2, 4)(39, 46)(97, 98)(101, 109)(104, 116)(111, 129)
c1: (23, 48)
d1: (25, 38)
e1: (28, 49)(56, 59)(117, 130)(137, 153)(140, 156)(147, 160)
f1: (29, 34)(57, 81)(118, 131)(125, 134)(138, 154)(165, 179)
g1: (9, 17)(31, 50)(108, 124)(115, 120)(121, 141)(132, 150)
h1: (4, 46)
m1: (42, 51)
n2: (49, 59)
a2: (11, 33)
b2: (83, 91)
c2: (36, 78)
d2: (35, 53)(70, 90)(126, 135)(145, 159)(167, 184)(174, 181)
e2: (8, 16)(26, 80)(107, 123)(108, 115)(114, 133)(120, 124)
f2: (65, 84)
g2: (1, 2)(3, 8)(4, 10)(5, 13)(6, 15)(7, 16)(9, 14)(11, 23)(12, 25)(17, 20)(18, 38)(19, 40)(21, 41)(22, 46)(24, 31)(26, 54)(27, 52)(28, 29)(30, 50)(32, 58)(33, 48)(34, 49)(35, 64)(36, 65)(37, 44)(39, 71)(42, 62)(43, 67)(45, 63)(47, 80)(51, 86)(53, 83)(55, 85)(56, 57)(59, 81)(60, 75)(61, 66)(68, 76)(69, 72)(70, 91)(73, 88)(74, 82)(77, 79)(78, 84)(87, 90)(89, 92)(93, 96)(94, 95)(98, 101)(99, 104)(100, 107)(102, 111)(103, 114)(105, 115)(106, 123)(108, 119)(110, 116)(112, 120)(113, 133)(117, 154)(118, 156)(121, 139)(122, 129)(124, 127)(125, 160)(126, 148)(128, 162)(130, 138)(131, 140)(132, 155)(134, 147)(135, 161)(136, 149)(137, 179)(141, 157)(142, 163)(143, 150)(144, 164)(145, 172)(146, 151)(152, 168)(153, 165)(158, 169)(159, 183)(166, 174)(167, 170)(171, 191)(173, 177)(176, 188)(178, 187)(180, 181)(182, 184)(185, 189)(186, 192)
h2: (14, 20)(24, 30)(105, 112)(119, 127)(139, 157)(143, 155)
m2: (45, 68)(74, 77)(152, 173)(164, 169)(171, 176)(178, 186)
n3: (15, 25)(38, 69)(107, 114)(123, 133)(140, 160)(147, 156)
a3: (5, 11)(33, 52)(99, 102)(110, 122)(117, 137)(130, 153)
b3: (7, 47)
c3: (16, 80)
d3: (12, 18)
e3: (20, 24)
f3: (41, 44)(66, 67)(149, 163)(151, 162)(152, 164)(169, 173)
g3: (13, 23)(27, 48)(104, 111)(116, 129)(138, 165)(154, 179)
h3: (76, 82)
m3: (44, 66)
n4: (3, 7)(47, 54)(100, 106)(103, 113)(105, 119)(112, 127)
a4: (2, 5)(3, 9)(4, 11)(6, 8)(7, 17)(12, 16)(13, 28)(14, 32)(15, 29)(18, 80)(19, 41)(20, 42)(21, 45)(23, 49)(24, 51)(25, 34)(26, 72)(27, 56)(30, 60)(31, 47)(33, 46)(35, 40)(36, 44)(37, 68)(38, 81)(39, 52)(43, 77)(48, 59)(50, 54)(53, 65)(55, 67)(57, 69)(58, 64)(61, 74)(62, 83)(63, 73)(66, 78)(70, 84)(75, 87)(76, 89)(79, 93)(82, 94)(85, 90)(86, 91)(97, 99)(98, 102)(100, 115)(101, 110)(103, 108)(104, 117)(105, 121)(106, 120)(107, 118)(109, 122)(111, 130)(112, 132)(113, 124)(114, 131)(116, 137)(119, 141)(123, 134)(125, 133)(126, 149)(127, 150)(128, 152)(129, 153)(135, 162)(136, 164)(138, 147)(139, 180)(140, 179)(142, 169)(143, 182)(144, 171)(145, 163)(146, 173)(148, 181)(151, 159)(154, 156)(155, 166)(157, 170)(158, 178)(160, 165)(161, 167)(168, 176)(172, 174)(175, 191)(177, 186)(183, 184)(185, 187)(188, 189)(190, 192)
b4: (73, 89)(93, 94)(171, 178)(175, 189)(176, 186)(185, 190)
c4: (21, 37)(43, 61)(128, 146)(136, 142)(144, 168)(158, 177)
d4: (34, 81)
e4: (63, 76)(79, 82)(144, 158)(168, 177)(187, 192)(188, 191)
f4: (37, 61)
g4: (62, 86)
h4: (58, 62)(75, 86)(139, 155)(143, 157)(167, 181)(174, 184)
m4: (92, 95)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 134 ]
192
-1 99 102 97 98
-2 111 101 104 97
-3 100 112 103 105
-4 116 129 98 109
-5 99 110 117 130
-6 100 106 118 131
-7 113 127 106 119
-8 114 115 107 120
-9 121 132 115 108
-10 110 122 101 109
-11 122 102 137 153
-12 134 113 103 125
-13 154 104 116 138
-14 155 105 139 119
-15 123 156 107 140
-16 133 123 124 108
-17 124 150 141 120
-18 134 113 103 125
-19 135 136 126 142
-20 143 112 157 127
-21 144 136 158 128
-22 110 122 101 109
-23 165 111 179 129
-24 143 112 157 127
-25 133 114 147 160
-26 114 115 107 120
-27 154 104 116 138
-28 156 147 137 117
-29 154 134 179 118
-30 155 105 139 119
-31 124 150 141 120
-32 121 166 180 141
-33 122 102 137 153
-34 165 125 138 131
-35 145 167 126 181
-36 145 146 159 128
-37 177 146 168 142
-38 133 114 147 160
-39 111 101 104 97
-40 148 149 161 163
-41 169 149 162 164
-42 132 170 182 150
-43 144 136 158 128
-44 151 173 152 163
-45 178 171 152 164
-46 116 129 98 109
-47 113 127 106 119
-48 165 111 179 129
-49 160 140 130 153
-50 121 132 115 108
-51 132 170 182 150
-52 99 110 117 130
-53 135 159 184 174
-54 100 112 103 105
-55 135 136 126 142
-56 156 147 137 117
-57 154 134 179 118
-58 157 181 139 174
-59 160 140 130 153
-60 121 166 180 141
-61 177 146 168 142
-62 143 155 167 184
-63 187 144 168 191
-64 180 148 170 172
-65 172 183 151 162
-66 151 173 152 163
-67 169 149 162 164
-68 176 169 173 186
-69 123 156 107 140
-70 135 159 184 174
-71 99 102 97 98
-72 100 106 118 131
-73 176 171 185 175
-74 176 169 173 186
-75 157 181 139 174
-76 177 188 158 192
-77 178 171 152 164
-78 145 146 159 128
-79 187 144 168 191
-80 133 123 124 108
-81 165 125 138 131
-82 177 188 158 192
-83 166 182 161 183
-84 172 183 151 162
-85 148 149 161 163
-86 143 155 167 184
-87 180 148 170 172
-88 188 189 191 175
-89 178 189 190 186
-90 145 167 126 181
-91 166 182 161 183
-92 187 190 192 185
-93 176 171 185 175
-94 178 189 190 186
-95 187 190 192 185
-96 188 189 191 175
-97 1 2 71 39
-98 1 46 4 71
-99 1 5 71 52
-100 3 6 72 54
-101 22 2 39 10
-102 11 33 1 71
-103 12 3 18 54
-104 2 13 27 39
-105 3 14 30 54
-106 47 6 72 7
-107 69 15 26 8
-108 80 16 50 9
-109 22 46 4 10
-110 22 5 52 10
-111 23 2 48 39
-112 24 3 20 54
-113 12 47 7 18
-114 25 26 38 8
-115 26 50 8 9
-116 13 46 4 27
-117 56 5 28 52
-118 57 6 72 29
-119 14 47 7 30
-120 26 17 8 31
-121 60 50 9 32
-122 11 22 33 10
-123 69 80 15 16
-124 80 16 17 31
-125 12 34 81 18
-126 55 35 90 19
-127 24 47 7 20
-128 78 36 21 43
-129 23 46 4 48
-130 59 5 49 52
-131 34 81 6 72
-132 50 51 9 42
-133 25 80 16 38
-134 12 57 18 29
-135 55 70 19 53
-136 55 19 21 43
-137 11 33 56 28
-138 34 13 81 27
-139 14 58 30 75
-140 69 15 59 49
-141 60 17 31 32
-142 55 37 61 19
-143 24 62 20 86
-144 79 63 21 43
-145 78 35 90 36
-146 78 36 37 61
-147 56 25 38 28
-148 40 85 64 87
-149 67 40 41 85
-150 17 51 31 42
-151 44 66 84 65
-152 44 66 77 45
-153 11 33 59 49
-154 13 57 27 29
-155 14 62 30 86
-156 56 69 15 28
-157 24 58 20 75
-158 82 21 43 76
-159 78 36 70 53
-160 25 59 38 49
-161 91 83 40 85
-162 67 84 41 65
-163 44 66 40 85
-164 77 45 67 41
-165 23 34 48 81
-166 91 60 83 32
-167 35 90 62 86
-168 79 37 61 63
-169 67 68 41 74
-170 51 42 64 87
-171 77 45 93 73
-172 84 64 65 87
-173 44 66 68 74
-174 58 70 53 75
-175 88 93 73 96
-176 68 93 73 74
-177 37 82 61 76
-178 77 45 89 94
-179 23 57 48 29
-180 60 64 32 87
-181 35 90 58 75
-182 91 83 51 42
-183 91 83 84 65
-184 70 62 53 86
-185 92 93 73 95
-186 89 68 94 74
-187 79 92 95 63
-188 88 82 96 76
-189 88 89 94 96
-190 89 92 94 95
-191 88 79 63 96
-192 92 82 95 76
0

**************