[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 192, 135 ] =
SDD(R_24(8,19)).
(I) Following is a form readable by MAGMA:
g:=Graph<192|{ {96, 97}, {96, 98}, {96, 99}, {96, 101}, {80, 113}, {89, 122},
{75, 110}, {73, 111}, {86, 112}, {78, 105}, {83, 116}, {92, 116}, {93, 117},
{80, 121}, {89, 114}, {75, 102}, {68, 106}, {66, 109}, {83, 124}, {75, 123},
{92, 108}, {90, 106}, {78, 126}, {68, 119}, {80, 100}, {89, 109}, {83, 103},
{86, 99}, {90, 111}, {77, 122}, {94, 105}, {75, 115}, {94, 102}, {90, 98}, {78,
118}, {94, 100}, {68, 127}, {80, 108}, {89, 101}, {86, 107}, {90, 103}, {86,
104}, {94, 97}, {54, 112}, {59, 125}, {48, 121}, {37, 110}, {51, 120}, {50,
127}, {63, 114}, {59, 117}, {32, 115}, {59, 104}, {40, 126}, {51, 107}, {34,
123}, {42, 118}, {45, 113}, {1, 97}, {31, 127}, {30, 126}, {29, 125}, {28, 124},
{27, 123}, {26, 122}, {25, 121}, {24, 120}, {23, 119}, {22, 118}, {21, 117}, {3,
98}, {29, 124}, {28, 125}, {19, 114}, {17, 112}, {15, 110}, {13, 108}, {11,
106}, {9, 104}, {7, 102}, {5, 100}, {1, 99}, {1, 98}, {18, 113}, {14, 109}, {10,
105}, {6, 101}, {2, 97}, {1, 101}, {3, 103}, {2, 102}, {2, 100}, {4, 99}, {20,
115}, {12, 107}, {3, 106}, {7, 110}, {5, 108}, {2, 105}, {6, 109}, {3, 111}, {4,
104}, {4, 107}, {24, 119}, {23, 120}, {8, 103}, {4, 112}, {12, 120}, {11, 127},
{10, 126}, {9, 125}, {8, 124}, {7, 115}, {6, 114}, {5, 113}, {13, 116}, {5,
121}, {11, 119}, {10, 118}, {9, 117}, {8, 116}, {7, 123}, {6, 122}, {16, 111},
{8, 136}, {19, 147}, {18, 146}, {17, 145}, {16, 144}, {15, 143}, {14, 142}, {13,
141}, {12, 140}, {11, 139}, {10, 138}, {9, 137}, {46, 174}, {57, 185}, {23,
150}, {42, 171}, {44, 173}, {49, 176}, {22, 148}, {35, 161}, {23, 149}, {44,
174}, {48, 178}, {50, 176}, {53, 183}, {56, 186}, {58, 184}, {27, 152}, {39,
164}, {41, 170}, {46, 173}, {62, 189}, {29, 153}, {35, 167}, {34, 166}, {31,
155}, {28, 153}, {43, 174}, {60, 185}, {61, 184}, {28, 154}, {62, 184}, {29,
154}, {43, 172}, {20, 156}, {25, 145}, {15, 134}, {57, 178}, {12, 128}, {36,
168}, {31, 147}, {56, 180}, {15, 130}, {40, 165}, {36, 169}, {26, 151}, {24,
149}, {24, 150}, {39, 169}, {38, 168}, {56, 182}, {60, 178}, {14, 129}, {38,
169}, {16, 159}, {52, 187}, {13, 157}, {33, 177}, {14, 158}, {58, 170}, {39,
182}, {47, 189}, {82, 192}, {52, 166}, {53, 167}, {16, 131}, {20, 135}, {48,
163}, {20, 128}, {33, 181}, {21, 129}, {49, 165}, {17, 132}, {19, 134}, {41,
188}, {52, 162}, {54, 160}, {18, 133}, {87, 192}, {30, 137}, {47, 184}, {61,
170}, {27, 131}, {35, 186}, {55, 174}, {55, 172}, {91, 192}, {18, 142}, {40,
180}, {22, 139}, {41, 183}, {49, 175}, {63, 161}, {95, 192}, {32, 128}, {55,
151}, {56, 152}, {57, 153}, {58, 154}, {62, 158}, {34, 131}, {40, 137}, {38,
135}, {36, 133}, {42, 139}, {44, 141}, {46, 143}, {48, 145}, {50, 147}, {52,
149}, {61, 156}, {57, 155}, {33, 130}, {38, 133}, {37, 134}, {36, 135}, {41,
138}, {44, 143}, {45, 142}, {46, 141}, {49, 146}, {53, 150}, {21, 177}, {60,
153}, {58, 156}, {32, 135}, {37, 130}, {35, 132}, {43, 140}, {54, 145}, {60,
155}, {61, 154}, {45, 133}, {53, 157}, {26, 179}, {50, 155}, {30, 180}, {37,
143}, {25, 178}, {63, 147}, {62, 144}, {31, 176}, {39, 136}, {17, 160}, {47,
158}, {19, 161}, {54, 132}, {59, 137}, {51, 128}, {33, 148}, {21, 162}, {63,
134}, {25, 163}, {34, 152}, {30, 165}, {55, 140}, {32, 156}, {43, 151}, {22,
171}, {27, 166}, {26, 164}, {42, 148}, {45, 146}, {47, 144}, {51, 140}, {72,
136}, {85, 148}, {92, 157}, {66, 129}, {78, 138}, {67, 132}, {73, 131}, {66,
142}, {84, 152}, {68, 139}, {79, 159}, {92, 141}, {88, 138}, {69, 150}, {70,
149}, {73, 159}, {85, 130}, {69, 157}, {74, 146}, {73, 144}, {77, 151}, {83,
136}, {66, 158}, {93, 129}, {64, 159}, {70, 166}, {95, 191}, {85, 181}, {84,
180}, {79, 175}, {65, 160}, {95, 190}, {82, 179}, {72, 169}, {67, 161}, {84,
182}, {79, 173}, {69, 167}, {95, 188}, {67, 167}, {91, 191}, {88, 188}, {87,
179}, {85, 177}, {76, 168}, {71, 163}, {70, 162}, {74, 175}, {91, 190}, {91,
188}, {65, 168}, {82, 187}, {77, 164}, {71, 172}, {82, 185}, {71, 171}, {93,
177}, {87, 187}, {81, 189}, {76, 160}, {72, 164}, {64, 173}, {84, 186}, {87,
185}, {64, 175}, {88, 183}, {74, 165}, {79, 190}, {69, 183}, {88, 170}, {81,
163}, {76, 191}, {65, 181}, {67, 186}, {76, 181}, {71, 189}, {81, 171}, {74,
176}, {70, 187}, {81, 172}, {64, 190}, {77, 179}, {72, 182}, {65, 191}, {93,
162} }>;
(II) A more general form is to represent the graph as the orbit of {96, 97}
under the group generated by the following permutations:
a: (44, 46) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (52, 70)
c: (23, 24)
d: (35, 67)
e: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 22)(16, 25)(17,
27)(19, 30)(21, 33)(23, 36)(24, 38)(26, 41)(28, 44)(29, 46)(31, 49)(32, 51)(34,
54)(35, 56)(37, 59)(39, 53)(40, 63)(42, 66)(43, 58)(45, 68)(47, 71)(48, 73)(50,
74)(52, 65)(55, 61)(57, 64)(60, 79)(62, 81)(67, 84)(69, 72)(70, 76)(75, 86)(77,
88)(78, 89)(80, 90)(82, 91)(83, 92)(85, 93)(87, 95)(94, 96)(98, 100)(99,
102)(101, 105)(103, 108)(104, 110)(106, 113)(107, 115)(109, 118)(111, 121)(112,
123)(114, 126)(117, 130)(119, 133)(120, 135)(122, 138)(124, 141)(125, 143)(127,
146)(129, 148)(131, 145)(132, 152)(134, 137)(136, 157)(139, 142)(140, 156)(144,
163)(147, 165)(149, 168)(150, 169)(151, 170)(153, 173)(154, 174)(155, 175)(158,
171)(159, 178)(160, 166)(161, 180)(162, 181)(164, 183)(167, 182)(172, 184)(179,
188)(185, 190)(187, 191)
f: (17, 54)
g: (58, 61)
h: (56, 84)
m: (39, 72)
n1: (47, 62)
a1: (2, 4, 6, 3)(5, 12, 14, 11)(7, 9, 19, 8)(10, 17, 26, 16)(13, 20, 21, 31)(15,
28)(18, 23)(22, 25, 43, 47)(24, 45)(27, 30, 35, 39)(29, 37)(32, 93, 50, 92)(33,
57, 44, 58)(34, 40, 67, 72)(36, 52, 49, 53)(38, 70, 74, 69)(41, 65, 82, 64)(42,
48, 55, 62)(46, 61, 85, 60)(51, 66, 68, 80)(54, 77, 73, 78)(59, 63, 83, 75)(76,
87, 79, 88)(86, 89, 90, 94)(97, 99, 101, 98)(100, 107, 109, 106)(102, 104, 114,
103)(105, 112, 122, 111)(108, 128, 129, 127)(110, 125, 134, 124)(113, 120, 142,
119)(115, 117, 147, 116)(118, 145, 151, 144)(121, 140, 158, 139)(123, 137, 161,
136)(126, 132, 164, 131)(130, 153, 143, 154)(133, 149, 146, 150)(135, 162, 176,
157)(138, 160, 179, 159)(141, 156, 177, 155)(148, 178, 174, 184)(152, 180, 186,
182)(163, 172, 189, 171)(165, 167, 169, 166)(168, 187, 175, 183)(170, 181, 185,
173)(188, 191, 192, 190)
b1: (21, 93)
c1: (43, 55)
d1: (82, 87)
e1: (49, 74)
f1: (13, 92)
g1: (28, 29)
h1: (8, 83)
m1: (18, 45)
n2: (57, 60)
a2: (5, 80)
b2: (12, 51)
c2: (16, 73)
d2: (3, 90)
e2: (6, 89)
f2: (10, 78)
g2: (33, 85)
h2: (26, 77)
m2: (65, 76)
n3: (20, 32)
a3: (25, 48)
b3: (7, 75)
c3: (41, 88)
d3: (27, 34)
e3: (91, 95)
f3: (36, 38)
g3: (30, 40)
h3: (2, 94)
m3: (11, 68)
n4: (15, 37)
a4: (71, 81)
b4: (9, 59)
c4: (19, 63)
d4: (31, 50)
e4: (4, 86)
f4: (14, 66)
g4: (64, 79)
h4: (53, 69)
m4: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(15, 23)(17, 26)(18, 28)(20,
31)(22, 27)(24, 37)(25, 39)(29, 45)(30, 47)(32, 50)(33, 52)(34, 42)(35, 43)(36,
57)(38, 60)(40, 62)(41, 64)(44, 53)(46, 69)(48, 72)(49, 58)(51, 63)(54, 77)(55,
67)(56, 71)(59, 66)(61, 74)(65, 82)(68, 75)(70, 85)(73, 78)(76, 87)(79, 88)(80,
83)(81, 84)(86, 89)(90, 94)(97, 98)(99, 101)(100, 103)(102, 106)(104, 109)(105,
111)(107, 114)(108, 116)(110, 119)(112, 122)(113, 124)(115, 127)(117, 129)(118,
131)(120, 134)(121, 136)(123, 139)(125, 142)(126, 144)(128, 147)(130, 149)(132,
151)(133, 153)(135, 155)(137, 158)(138, 159)(140, 161)(141, 157)(143, 150)(145,
164)(146, 154)(148, 166)(152, 171)(156, 176)(160, 179)(162, 177)(163, 182)(165,
184)(167, 174)(168, 185)(169, 178)(170, 175)(172, 186)(173, 183)(180, 189)(181,
187)(188, 190)(191, 192)
C4[ 192, 135 ]
192
-1 99 101 97 98
-2 100 102 105 97
-3 111 103 106 98
-4 99 112 104 107
-5 121 100 113 108
-6 122 101 114 109
-7 110 123 102 115
-8 124 103 136 116
-9 125 104 137 117
-10 126 105 138 118
-11 127 106 139 119
-12 128 107 140 120
-13 157 116 108 141
-14 158 129 109 142
-15 110 143 134 130
-16 111 144 159 131
-17 132 112 145 160
-18 133 113 146 142
-19 134 114 147 161
-20 156 135 115 128
-21 177 117 129 162
-22 148 171 139 118
-23 149 150 119 120
-24 149 150 119 120
-25 121 145 178 163
-26 122 179 151 164
-27 166 123 152 131
-28 154 124 125 153
-29 154 124 125 153
-30 165 180 126 137
-31 176 155 147 127
-32 156 135 115 128
-33 177 148 181 130
-34 166 123 152 131
-35 132 167 161 186
-36 133 135 168 169
-37 110 143 134 130
-38 133 135 168 169
-39 136 169 182 164
-40 165 180 126 137
-41 188 170 138 183
-42 148 171 139 118
-43 172 140 151 174
-44 143 173 141 174
-45 133 113 146 142
-46 143 173 141 174
-47 144 189 158 184
-48 121 145 178 163
-49 165 176 146 175
-50 176 155 147 127
-51 128 107 140 120
-52 187 166 149 162
-53 167 157 150 183
-54 132 112 145 160
-55 172 140 151 174
-56 180 182 152 186
-57 155 178 185 153
-58 154 156 170 184
-59 125 104 137 117
-60 155 178 185 153
-61 154 156 170 184
-62 144 189 158 184
-63 134 114 147 161
-64 190 159 173 175
-65 168 191 181 160
-66 158 129 109 142
-67 132 167 161 186
-68 127 106 139 119
-69 167 157 150 183
-70 187 166 149 162
-71 189 171 172 163
-72 136 169 182 164
-73 111 144 159 131
-74 165 176 146 175
-75 110 123 102 115
-76 168 191 181 160
-77 122 179 151 164
-78 126 105 138 118
-79 190 159 173 175
-80 121 100 113 108
-81 189 171 172 163
-82 187 179 192 185
-83 124 103 136 116
-84 180 182 152 186
-85 177 148 181 130
-86 99 112 104 107
-87 187 179 192 185
-88 188 170 138 183
-89 122 101 114 109
-90 111 103 106 98
-91 188 190 191 192
-92 157 116 108 141
-93 177 117 129 162
-94 100 102 105 97
-95 188 190 191 192
-96 99 101 97 98
-97 1 2 94 96
-98 1 90 3 96
-99 1 4 96 86
-100 2 80 5 94
-101 1 89 6 96
-102 2 94 7 75
-103 90 3 83 8
-104 4 59 9 86
-105 78 2 94 10
-106 11 68 90 3
-107 12 4 51 86
-108 13 80 92 5
-109 66 89 14 6
-110 15 37 7 75
-111 90 3 16 73
-112 4 17 86 54
-113 45 80 5 18
-114 89 6 19 63
-115 7 20 75 32
-116 13 92 83 8
-117 59 93 9 21
-118 22 78 42 10
-119 11 23 24 68
-120 12 23 24 51
-121 25 80 48 5
-122 77 89 26 6
-123 34 27 7 75
-124 28 83 29 8
-125 59 28 29 9
-126 78 40 30 10
-127 11 68 50 31
-128 12 51 20 32
-129 66 14 93 21
-130 33 15 37 85
-131 34 16 27 73
-132 67 35 17 54
-133 45 36 38 18
-134 15 37 19 63
-135 36 38 20 32
-136 39 72 83 8
-137 59 40 30 9
-138 88 78 41 10
-139 11 22 68 42
-140 55 12 51 43
-141 44 13 46 92
-142 66 45 14 18
-143 44 46 15 37
-144 47 16 62 73
-145 25 48 17 54
-146 45 49 18 74
-147 50 19 63 31
-148 22 33 85 42
-149 23 24 70 52
-150 23 24 69 53
-151 55 77 26 43
-152 34 56 27 84
-153 57 60 28 29
-154 58 28 61 29
-155 57 60 50 31
-156 58 61 20 32
-157 13 69 92 53
-158 66 14 47 62
-159 79 16 73 64
-160 17 54 65 76
-161 67 35 19 63
-162 70 93 52 21
-163 25 48 81 71
-164 77 26 39 72
-165 49 40 30 74
-166 34 70 27 52
-167 67 35 69 53
-168 36 38 65 76
-169 36 38 39 72
-170 88 58 61 41
-171 22 81 71 42
-172 55 81 71 43
-173 44 46 79 64
-174 44 55 46 43
-175 79 49 74 64
-176 49 50 74 31
-177 33 93 85 21
-178 57 25 48 60
-179 77 26 82 87
-180 56 40 84 30
-181 33 85 65 76
-182 56 39 72 84
-183 88 69 41 53
-184 47 58 61 62
-185 57 60 82 87
-186 56 67 35 84
-187 70 82 52 87
-188 88 91 95 41
-189 47 81 71 62
-190 79 91 95 64
-191 91 95 65 76
-192 91 82 95 87
0