[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 192, 136 ] =
SDD(C_48(1,17)).
(I) Following is a form readable by MAGMA:
g:=Graph<192|{ {96, 97}, {96, 98}, {96, 99}, {96, 102}, {70, 102}, {75, 107},
{74, 107}, {84, 117}, {75, 106}, {71, 101}, {86, 116}, {90, 127}, {90, 115},
{92, 117}, {71, 109}, {93, 119}, {76, 103}, {91, 112}, {83, 120}, {69, 105},
{88, 116}, {94, 115}, {76, 124}, {95, 111}, {91, 105}, {92, 110}, {75, 126},
{88, 109}, {89, 111}, {94, 104}, {90, 108}, {72, 127}, {95, 104}, {93, 106},
{69, 125}, {92, 100}, {90, 98}, {74, 114}, {75, 113}, {95, 101}, {88, 99}, {74,
118}, {91, 103}, {70, 123}, {71, 122}, {95, 97}, {91, 100}, {46, 110}, {54,
119}, {54, 114}, {48, 123}, {49, 122}, {61, 118}, {53, 121}, {52, 121}, {53,
120}, {60, 113}, {46, 125}, {32, 124}, {48, 108}, {34, 127}, {45, 112}, {33,
126}, {1, 97}, {29, 124}, {1, 99}, {26, 120}, {6, 100}, {1, 98}, {23, 116}, {8,
107}, {2, 97}, {3, 103}, {14, 106}, {13, 105}, {12, 104}, {9, 109}, {21, 112},
{31, 122}, {27, 126}, {4, 98}, {5, 99}, {1, 102}, {22, 113}, {3, 100}, {2, 101},
{4, 108}, {17, 121}, {16, 120}, {6, 110}, {5, 109}, {16, 121}, {18, 123}, {2,
104}, {3, 105}, {7, 107}, {11, 103}, {10, 102}, {9, 101}, {2, 111}, {24, 117},
{7, 106}, {19, 125}, {25, 118}, {13, 125}, {5, 116}, {10, 123}, {3, 112}, {9,
122}, {6, 117}, {7, 113}, {4, 115}, {11, 124}, {15, 119}, {7, 126}, {14, 119},
{8, 114}, {4, 127}, {20, 111}, {15, 114}, {19, 110}, {8, 118}, {18, 108}, {12,
115}, {62, 190}, {19, 146}, {28, 157}, {21, 148}, {18, 144}, {22, 149}, {67,
192}, {12, 136}, {17, 149}, {14, 138}, {13, 137}, {47, 171}, {58, 190}, {59,
191}, {5, 128}, {16, 150}, {47, 169}, {6, 129}, {20, 147}, {47, 168}, {56, 191},
{34, 170}, {42, 162}, {36, 172}, {35, 171}, {57, 177}, {29, 148}, {46, 167},
{55, 190}, {8, 130}, {44, 166}, {42, 160}, {21, 159}, {20, 158}, {57, 179}, {45,
166}, {57, 178}, {59, 176}, {63, 180}, {10, 134}, {40, 164}, {31, 147}, {30,
146}, {27, 151}, {15, 131}, {11, 135}, {59, 183}, {61, 177}, {44, 161}, {77,
192}, {25, 151}, {55, 185}, {31, 144}, {40, 184}, {41, 185}, {23, 134}, {43,
186}, {39, 182}, {38, 183}, {36, 181}, {34, 179}, {30, 143}, {28, 141}, {62,
175}, {10, 152}, {29, 143}, {28, 142}, {14, 156}, {11, 153}, {60, 174}, {29,
142}, {37, 182}, {16, 132}, {17, 133}, {41, 188}, {85, 192}, {58, 175}, {12,
154}, {26, 140}, {13, 155}, {51, 165}, {27, 140}, {35, 180}, {9, 145}, {44,
180}, {15, 150}, {36, 189}, {34, 187}, {48, 169}, {50, 171}, {63, 166}, {17,
139}, {50, 168}, {49, 170}, {50, 169}, {38, 186}, {43, 183}, {60, 160}, {37,
184}, {56, 165}, {27, 133}, {61, 163}, {63, 161}, {24, 135}, {42, 181}, {39,
184}, {35, 188}, {51, 172}, {55, 168}, {40, 136}, {43, 139}, {42, 138}, {41,
137}, {48, 144}, {54, 150}, {37, 132}, {44, 141}, {49, 144}, {51, 146}, {52,
149}, {56, 153}, {58, 155}, {49, 147}, {35, 128}, {39, 132}, {50, 145}, {53,
150}, {57, 154}, {62, 157}, {33, 133}, {36, 129}, {39, 130}, {38, 131}, {62,
155}, {37, 130}, {58, 157}, {59, 156}, {24, 176}, {43, 131}, {26, 178}, {25,
177}, {60, 149}, {61, 151}, {33, 140}, {38, 139}, {32, 142}, {32, 143}, {55,
152}, {52, 133}, {53, 132}, {30, 172}, {45, 159}, {63, 141}, {21, 166}, {19,
167}, {32, 148}, {31, 170}, {54, 131}, {22, 160}, {41, 159}, {40, 158}, {33,
151}, {23, 161}, {22, 174}, {23, 175}, {20, 173}, {45, 148}, {24, 162}, {25,
163}, {18, 169}, {30, 165}, {28, 167}, {46, 146}, {51, 143}, {26, 164}, {47,
145}, {52, 139}, {70, 134}, {93, 156}, {73, 141}, {94, 154}, {73, 142}, {89,
158}, {74, 130}, {64, 138}, {89, 147}, {66, 136}, {76, 135}, {69, 137}, {81,
159}, {86, 134}, {80, 129}, {78, 156}, {82, 128}, {84, 135}, {73, 157}, {76,
153}, {79, 154}, {71, 145}, {94, 136}, {93, 138}, {81, 137}, {88, 128}, {67,
153}, {66, 158}, {68, 152}, {92, 129}, {69, 155}, {70, 152}, {83, 140}, {64,
160}, {83, 178}, {87, 182}, {64, 162}, {65, 163}, {72, 170}, {77, 174}, {84,
176}, {80, 181}, {66, 164}, {82, 180}, {67, 165}, {81, 185}, {85, 189}, {65,
173}, {87, 187}, {68, 168}, {80, 189}, {81, 188}, {73, 167}, {82, 188}, {85,
186}, {77, 189}, {78, 191}, {72, 187}, {87, 163}, {89, 173}, {64, 181}, {84,
162}, {65, 182}, {86, 161}, {83, 164}, {77, 186}, {56, 192}, {78, 183}, {86,
175}, {82, 171}, {65, 187}, {87, 173}, {66, 184}, {68, 190}, {72, 179}, {85,
174}, {67, 191}, {80, 172}, {79, 179}, {68, 185}, {79, 178}, {78, 176}, {79,
177} }>;
(II) A more general form is to represent the graph as the orbit of {96, 97}
under the group generated by the following permutations:
a: (16, 53) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (29, 32)
c: (14, 93)
d: (37, 39)
e: (21, 45)
f: (35, 82)
g: (17, 52)
h: (34, 72)
m: (15, 54)
n1: (19, 46)
a1: (25, 61)
b1: (24, 84)
c1: (42, 64)
d1: (1, 2)(3, 7)(4, 9)(5, 12)(6, 14)(8, 13)(10, 20)(11, 22)(15, 19)(16, 28)(17,
29)(18, 31)(21, 27)(23, 40)(24, 42)(25, 41)(26, 44)(30, 38)(32, 52)(33, 45)(34,
47)(35, 57)(36, 59)(37, 58)(39, 62)(43, 51)(46, 54)(48, 49)(50, 72)(53, 73)(55,
65)(56, 77)(60, 76)(61, 81)(63, 83)(64, 84)(66, 86)(67, 85)(68, 87)(69, 74)(70,
89)(71, 90)(75, 91)(78, 80)(79, 82)(88, 94)(92, 93)(95, 96)(98, 101)(99,
104)(100, 106)(102, 111)(103, 113)(105, 107)(108, 122)(109, 115)(110, 119)(112,
126)(114, 125)(116, 136)(117, 138)(118, 137)(120, 141)(121, 142)(123, 147)(124,
149)(127, 145)(128, 154)(129, 156)(130, 155)(131, 146)(132, 157)(133, 148)(134,
158)(135, 160)(139, 143)(140, 166)(150, 167)(151, 159)(152, 173)(153, 174)(161,
164)(163, 185)(165, 186)(168, 187)(169, 170)(171, 179)(172, 183)(175, 184)(176,
181)(177, 188)(178, 180)(182, 190)(189, 191)
e1: (2, 95)
f1: (65, 87)
g1: (27, 33)
h1: (31, 49)
m1: (9, 71)
n2: (20, 89)
a2: (77, 85)
b2: (6, 92)
c2: (44, 63)
d2: (8, 74)
e2: (56, 67)
f2: (5, 88)
g2: (13, 69)
h2: (26, 83)
m2: (41, 81)
n3: (3, 91)
a3: (47, 50)
b3: (7, 75)
c3: (58, 62)
d3: (28, 73)
e3: (18, 48)
f3: (2, 5)(3, 8)(4, 10)(6, 7)(11, 15)(12, 23)(13, 25)(14, 24)(16, 29)(17,
30)(19, 27)(20, 35)(21, 37)(22, 36)(26, 28)(31, 47)(32, 53)(33, 46)(34, 55)(38,
56)(39, 45)(40, 44)(41, 65)(43, 67)(49, 50)(51, 52)(54, 76)(57, 58)(60, 80)(61,
69)(62, 79)(63, 66)(68, 72)(70, 90)(73, 83)(74, 91)(75, 92)(81, 87)(82, 89)(84,
93)(86, 94)(88, 95)(97, 99)(98, 102)(100, 107)(101, 109)(103, 114)(104,
116)(105, 118)(106, 117)(108, 123)(110, 126)(111, 128)(112, 130)(113, 129)(115,
134)(119, 135)(120, 142)(121, 143)(122, 145)(124, 150)(125, 151)(127, 152)(131,
153)(132, 148)(133, 146)(136, 161)(137, 163)(138, 162)(139, 165)(140, 167)(141,
164)(144, 169)(147, 171)(149, 172)(154, 175)(155, 177)(156, 176)(157, 178)(158,
180)(159, 182)(160, 181)(166, 184)(168, 170)(173, 188)(174, 189)(179, 190)(183,
191)(185, 187)(186, 192)
g3: (55, 68)
h3: (10, 70)
m3: (11, 76)
n4: (4, 90)
a4: (38, 43)
b4: (2, 4)(5, 10)(6, 11)(7, 15)(9, 18)(13, 21)(16, 27)(19, 29)(20, 34)(22,
38)(25, 37)(32, 46)(33, 53)(35, 55)(36, 56)(39, 61)(40, 57)(42, 59)(43, 60)(44,
58)(45, 69)(48, 71)(54, 75)(62, 63)(64, 78)(66, 79)(67, 80)(68, 82)(70, 88)(72,
89)(76, 92)(90, 95)(97, 98)(99, 102)(100, 103)(101, 108)(104, 115)(105,
112)(106, 119)(107, 114)(109, 123)(110, 124)(111, 127)(113, 131)(116, 134)(117,
135)(118, 130)(120, 140)(121, 133)(122, 144)(125, 148)(126, 150)(128, 152)(129,
153)(132, 151)(136, 154)(137, 159)(138, 156)(139, 149)(141, 157)(142, 167)(143,
146)(145, 169)(147, 170)(155, 166)(158, 179)(160, 183)(161, 175)(162, 176)(163,
182)(164, 178)(165, 172)(168, 171)(173, 187)(174, 186)(177, 184)(180, 190)(181,
191)(185, 188)(189, 192)
c4: (23, 86)
d4: (12, 94)
e4: (40, 66)
f4: (57, 79)
g4: (59, 78)
h4: (30, 51)
m4: (36, 80)
C4[ 192, 136 ]
192
-1 99 102 97 98
-2 111 101 104 97
-3 100 112 103 105
-4 115 127 108 98
-5 99 116 128 109
-6 110 100 117 129
-7 113 126 106 107
-8 114 107 118 130
-9 122 101 145 109
-10 123 134 102 152
-11 124 135 103 153
-12 154 136 104 115
-13 155 125 137 105
-14 156 138 106 119
-15 114 150 119 131
-16 121 132 150 120
-17 121 133 149 139
-18 144 123 169 108
-19 110 167 146 125
-20 111 147 158 173
-21 166 112 148 159
-22 113 149 160 174
-23 134 116 161 175
-24 176 135 117 162
-25 177 118 151 163
-26 178 140 120 164
-27 133 126 140 151
-28 167 157 141 142
-29 143 124 148 142
-30 143 165 146 172
-31 122 144 147 170
-32 143 124 148 142
-33 133 126 140 151
-34 187 179 170 127
-35 188 180 171 128
-36 189 181 172 129
-37 132 182 184 130
-38 139 183 131 186
-39 132 182 184 130
-40 136 158 184 164
-41 188 137 159 185
-42 181 138 160 162
-43 139 183 131 186
-44 166 180 161 141
-45 166 112 148 159
-46 110 167 146 125
-47 145 168 169 171
-48 144 123 169 108
-49 122 144 147 170
-50 145 168 169 171
-51 143 165 146 172
-52 121 133 149 139
-53 121 132 150 120
-54 114 150 119 131
-55 168 190 152 185
-56 165 191 192 153
-57 154 177 178 179
-58 155 157 190 175
-59 176 156 191 183
-60 113 149 160 174
-61 177 118 151 163
-62 155 157 190 175
-63 166 180 161 141
-64 181 138 160 162
-65 187 182 173 163
-66 136 158 184 164
-67 165 191 192 153
-68 168 190 152 185
-69 155 125 137 105
-70 123 134 102 152
-71 122 101 145 109
-72 187 179 170 127
-73 167 157 141 142
-74 114 107 118 130
-75 113 126 106 107
-76 124 135 103 153
-77 189 192 174 186
-78 176 156 191 183
-79 154 177 178 179
-80 189 181 172 129
-81 188 137 159 185
-82 188 180 171 128
-83 178 140 120 164
-84 176 135 117 162
-85 189 192 174 186
-86 134 116 161 175
-87 187 182 173 163
-88 99 116 128 109
-89 111 147 158 173
-90 115 127 108 98
-91 100 112 103 105
-92 110 100 117 129
-93 156 138 106 119
-94 154 136 104 115
-95 111 101 104 97
-96 99 102 97 98
-97 1 2 95 96
-98 1 90 4 96
-99 88 1 5 96
-100 3 91 92 6
-101 2 71 95 9
-102 1 70 96 10
-103 11 3 91 76
-104 12 2 94 95
-105 13 3 69 91
-106 14 93 7 75
-107 7 8 74 75
-108 90 4 48 18
-109 88 5 71 9
-110 46 92 6 19
-111 89 2 95 20
-112 45 3 91 21
-113 22 60 7 75
-114 15 8 74 54
-115 12 90 4 94
-116 88 23 5 86
-117 24 92 6 84
-118 25 61 8 74
-119 14 15 93 54
-120 26 16 83 53
-121 16 17 52 53
-122 49 71 9 31
-123 48 70 18 10
-124 11 29 32 76
-125 13 46 69 19
-126 33 27 7 75
-127 34 90 4 72
-128 88 35 5 82
-129 36 80 92 6
-130 37 39 8 74
-131 15 38 43 54
-132 37 16 39 53
-133 33 27 17 52
-134 23 70 86 10
-135 11 24 84 76
-136 66 12 94 40
-137 13 69 81 41
-138 14 93 42 64
-139 38 17 52 43
-140 33 26 27 83
-141 44 28 73 63
-142 28 29 73 32
-143 29 51 30 32
-144 48 49 18 31
-145 47 71 50 9
-146 46 51 19 30
-147 89 49 20 31
-148 45 29 21 32
-149 22 60 17 52
-150 15 16 53 54
-151 33 25 27 61
-152 55 68 70 10
-153 11 56 67 76
-154 12 57 79 94
-155 13 58 69 62
-156 78 14 59 93
-157 58 28 62 73
-158 66 89 40 20
-159 45 81 41 21
-160 22 60 42 64
-161 44 23 63 86
-162 24 84 42 64
-163 25 61 65 87
-164 66 26 83 40
-165 56 67 51 30
-166 44 45 63 21
-167 46 28 73 19
-168 55 68 47 50
-169 47 48 50 18
-170 34 49 72 31
-171 35 47 82 50
-172 36 80 51 30
-173 89 20 65 87
-174 22 77 60 85
-175 23 58 62 86
-176 78 24 59 84
-177 57 79 25 61
-178 57 79 26 83
-179 34 57 79 72
-180 44 35 82 63
-181 36 80 42 64
-182 37 39 65 87
-183 78 59 38 43
-184 66 37 39 40
-185 55 68 81 41
-186 77 38 85 43
-187 34 72 65 87
-188 35 81 82 41
-189 77 36 80 85
-190 55 68 58 62
-191 56 67 78 59
-192 77 56 67 85
0