C4graphGraph forms for C4 [ 192, 137 ] = SDD({4,4}_[6,4])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 137 ] = SDD({4,4}_[6,4]).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {36, 101}, {36, 97}, {42, 111}, {36, 98}, {36, 99}, {58, 125}, {48, 121}, {34, 110}, {37, 105}, {35, 114}, {41, 120}, {37, 116}, {37, 119}, {43, 126}, {40, 126}, {42, 124}, {35, 123}, {37, 125}, {32, 121}, {34, 123}, {39, 125}, {47, 117}, {33, 122}, {38, 122}, {34, 127}, {1, 97}, {3, 98}, {30, 127}, {15, 110}, {13, 108}, {11, 106}, {9, 104}, {7, 102}, {5, 100}, {1, 99}, {1, 98}, {28, 127}, {23, 116}, {20, 119}, {19, 112}, {14, 109}, {10, 105}, {6, 101}, {2, 97}, {1, 101}, {3, 103}, {2, 102}, {8, 109}, {22, 115}, {20, 113}, {15, 106}, {9, 108}, {2, 100}, {26, 124}, {4, 99}, {31, 120}, {21, 114}, {12, 107}, {15, 103}, {30, 118}, {3, 106}, {26, 115}, {25, 112}, {14, 103}, {5, 108}, {22, 124}, {29, 119}, {28, 118}, {2, 105}, {19, 120}, {16, 123}, {6, 109}, {4, 111}, {4, 104}, {29, 113}, {25, 117}, {3, 110}, {19, 126}, {17, 124}, {15, 98}, {11, 102}, {9, 100}, {7, 106}, {5, 104}, {21, 123}, {27, 117}, {23, 121}, {4, 107}, {16, 127}, {8, 103}, {7, 118}, {24, 105}, {18, 99}, {8, 122}, {12, 126}, {6, 117}, {12, 120}, {25, 109}, {14, 122}, {13, 121}, {5, 115}, {7, 113}, {6, 112}, {10, 125}, {19, 107}, {13, 116}, {24, 97}, {18, 107}, {8, 114}, {18, 104}, {11, 113}, {9, 115}, {23, 108}, {12, 112}, {25, 101}, {24, 100}, {14, 114}, {10, 119}, {18, 111}, {11, 118}, {10, 116}, {24, 102}, {17, 111}, {16, 110}, {13, 132}, {27, 145}, {46, 164}, {30, 146}, {45, 161}, {31, 147}, {28, 146}, {62, 176}, {17, 128}, {60, 173}, {27, 137}, {23, 132}, {61, 174}, {30, 138}, {31, 139}, {50, 166}, {51, 167}, {20, 129}, {29, 136}, {26, 143}, {22, 131}, {49, 164}, {56, 173}, {16, 134}, {28, 138}, {17, 135}, {62, 168}, {21, 130}, {55, 160}, {57, 174}, {63, 168}, {22, 143}, {26, 131}, {56, 162}, {57, 163}, {59, 161}, {21, 142}, {62, 165}, {20, 136}, {29, 129}, {55, 171}, {93, 192}, {27, 133}, {94, 192}, {60, 162}, {61, 163}, {31, 128}, {95, 192}, {45, 141}, {96, 192}, {52, 148}, {53, 149}, {35, 130}, {40, 137}, {49, 144}, {63, 158}, {41, 139}, {43, 137}, {54, 148}, {56, 154}, {57, 155}, {63, 157}, {32, 131}, {38, 133}, {33, 133}, {34, 134}, {54, 147}, {44, 138}, {47, 137}, {58, 156}, {60, 154}, {61, 155}, {44, 139}, {48, 151}, {52, 147}, {50, 154}, {51, 155}, {41, 128}, {49, 152}, {54, 159}, {42, 128}, {46, 132}, {47, 133}, {58, 144}, {38, 141}, {52, 159}, {32, 140}, {33, 141}, {50, 158}, {51, 159}, {35, 142}, {44, 129}, {42, 135}, {59, 150}, {63, 146}, {58, 148}, {45, 130}, {55, 152}, {62, 145}, {60, 142}, {61, 143}, {39, 148}, {48, 131}, {50, 134}, {51, 135}, {53, 129}, {40, 157}, {49, 132}, {43, 157}, {46, 152}, {56, 142}, {57, 143}, {59, 141}, {32, 151}, {39, 144}, {33, 153}, {44, 149}, {59, 130}, {41, 147}, {39, 156}, {45, 150}, {55, 140}, {48, 140}, {52, 136}, {40, 149}, {43, 149}, {46, 144}, {47, 145}, {53, 139}, {54, 136}, {38, 153}, {53, 138}, {70, 135}, {69, 134}, {71, 140}, {82, 156}, {72, 153}, {64, 146}, {67, 151}, {66, 151}, {73, 156}, {65, 150}, {70, 159}, {79, 150}, {69, 158}, {96, 187}, {64, 157}, {68, 153}, {70, 155}, {64, 158}, {96, 190}, {69, 154}, {96, 191}, {78, 145}, {71, 152}, {67, 163}, {95, 191}, {93, 189}, {87, 183}, {86, 182}, {84, 180}, {76, 172}, {74, 170}, {66, 163}, {95, 190}, {93, 188}, {92, 189}, {91, 186}, {88, 185}, {85, 180}, {81, 176}, {68, 165}, {70, 167}, {77, 175}, {94, 188}, {83, 177}, {65, 162}, {94, 189}, {91, 184}, {89, 186}, {69, 166}, {74, 169}, {72, 172}, {95, 187}, {92, 184}, {80, 180}, {82, 183}, {73, 175}, {92, 186}, {91, 189}, {90, 188}, {89, 191}, {88, 190}, {84, 178}, {79, 169}, {78, 168}, {71, 160}, {85, 178}, {81, 182}, {75, 172}, {64, 168}, {93, 181}, {91, 179}, {87, 191}, {86, 190}, {65, 169}, {66, 170}, {68, 172}, {67, 170}, {77, 164}, {74, 160}, {90, 176}, {75, 161}, {78, 165}, {94, 181}, {80, 187}, {71, 171}, {90, 182}, {85, 185}, {72, 165}, {87, 186}, {84, 185}, {81, 188}, {79, 162}, {76, 161}, {73, 167}, {89, 183}, {88, 182}, {86, 185}, {92, 179}, {67, 179}, {66, 179}, {68, 181}, {65, 178}, {83, 160}, {75, 184}, {76, 184}, {80, 164}, {82, 167}, {88, 173}, {77, 187}, {81, 166}, {89, 174}, {77, 180}, {87, 174}, {83, 170}, {75, 177}, {83, 169}, {74, 177}, {86, 173}, {90, 166}, {72, 181}, {82, 175}, {79, 178}, {76, 177}, {73, 183}, {85, 171}, {78, 176}, {80, 175}, {84, 171} }>;

(II) A more general form is to represent the graph as the orbit of {36, 101} under the group generated by the following permutations:

a: (62, 78)
b: (50, 69)
c: (95, 96)
d: (33, 38)
e: (46, 49)
f: (51, 70)
g: (2, 24)
h: (10, 37)
m: (65, 79)
n1: (55, 71)
a1: (74, 83)
b1: (21, 35)
c1: (87, 89)
d1: (52, 54)
e1: (28, 30)
f1: (20, 29)
g1: (75, 76)
h1: (12, 19)
m1: (6, 25)
n2: (77, 80)
a2: (3, 15)
b2: (13, 23)
c2: (66, 67)
d2: (63, 64)
e2: (39, 58)
f2: (81, 90)
g2: (27, 47)
h2: (16, 34)
m2: (86, 88)
n3: (73, 82)
a3: (31, 41)
b3: (93, 94)
c3: (4, 18)
d3: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 23)(16, 22)(17, 28)(19, 29)(21, 32)(24, 36)(25, 37)(26, 34)(27, 39)(30, 42)(31, 44)(33, 46)(35, 48)(38, 49)(40, 52)(41, 53)(43, 54)(45, 55)(47, 58)(50, 57)(51, 63)(56, 66)(59, 71)(60, 67)(61, 69)(62, 73)(64, 70)(65, 74)(68, 77)(72, 80)(75, 84)(76, 85)(78, 82)(79, 83)(81, 87)(86, 91)(88, 92)(89, 90)(93, 95)(94, 96)(98, 100)(99, 102)(101, 105)(103, 108)(104, 106)(107, 113)(109, 116)(110, 115)(111, 118)(112, 119)(114, 121)(117, 125)(120, 129)(122, 132)(123, 131)(124, 127)(126, 136)(128, 138)(130, 140)(133, 144)(134, 143)(135, 146)(137, 148)(141, 152)(142, 151)(145, 156)(147, 149)(150, 160)(153, 164)(154, 163)(155, 158)(157, 159)(161, 171)(162, 170)(165, 175)(166, 174)(167, 168)(172, 180)(173, 179)(176, 183)(177, 178)(181, 187)(182, 186)(184, 185)(188, 191)(189, 190)
e3: (2, 4)(3, 6)(7, 12)(10, 17)(11, 19)(13, 22)(15, 25)(16, 27)(18, 24)(20, 31)(21, 33)(23, 26)(28, 40)(29, 41)(30, 43)(34, 47)(35, 38)(37, 42)(39, 51)(46, 57)(49, 61)(50, 62)(55, 66)(56, 68)(58, 70)(60, 72)(65, 75)(67, 71)(69, 78)(76, 79)(77, 87)(80, 89)(84, 91)(85, 92)(86, 93)(88, 94)(97, 99)(98, 101)(100, 104)(102, 107)(103, 109)(105, 111)(106, 112)(108, 115)(110, 117)(113, 120)(114, 122)(116, 124)(118, 126)(119, 128)(121, 131)(123, 133)(125, 135)(127, 137)(129, 139)(130, 141)(132, 143)(134, 145)(136, 147)(138, 149)(140, 151)(142, 153)(144, 155)(146, 157)(148, 159)(150, 161)(152, 163)(154, 165)(156, 167)(158, 168)(160, 170)(162, 172)(164, 174)(166, 176)(169, 177)(171, 179)(173, 181)(175, 183)(178, 184)(180, 186)(182, 188)(185, 189)(187, 191)(190, 192)
f3: (45, 59)
g3: (8, 14)
h3: (57, 61)
m3: (56, 60)
n4: (32, 48)
a4: (2, 3)(4, 6)(5, 8)(9, 14)(10, 16)(13, 21)(15, 24)(17, 27)(18, 25)(20, 28)(22, 33)(23, 35)(26, 38)(29, 30)(31, 40)(32, 45)(34, 37)(39, 50)(41, 43)(42, 47)(46, 56)(48, 59)(49, 60)(51, 62)(52, 63)(54, 64)(55, 65)(57, 68)(58, 69)(61, 72)(66, 75)(67, 76)(70, 78)(71, 79)(73, 81)(77, 86)(80, 88)(82, 90)(87, 93)(89, 94)(97, 98)(99, 101)(100, 103)(102, 106)(104, 109)(105, 110)(107, 112)(108, 114)(111, 117)(113, 118)(115, 122)(116, 123)(119, 127)(120, 126)(121, 130)(124, 133)(125, 134)(128, 137)(129, 138)(131, 141)(132, 142)(135, 145)(136, 146)(139, 149)(140, 150)(143, 153)(144, 154)(147, 157)(148, 158)(151, 161)(152, 162)(155, 165)(156, 166)(159, 168)(160, 169)(163, 172)(164, 173)(167, 176)(170, 177)(171, 178)(174, 181)(175, 182)(179, 184)(180, 185)(183, 188)(186, 189)(187, 190)(191, 192)
b4: (17, 42)
c4: (44, 53)
d4: (22, 26)
e4: (91, 92)
f4: (40, 43)
g4: (5, 9)
h4: (68, 72)
m4: (7, 11)
n5: (84, 85)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 137 ]
192
-1 99 101 97 98
-2 100 102 105 97
-3 110 103 106 98
-4 99 111 104 107
-5 100 104 115 108
-6 101 112 117 109
-7 102 113 106 118
-8 122 103 114 109
-9 100 104 115 108
-10 125 105 116 119
-11 102 113 106 118
-12 112 126 107 120
-13 121 132 116 108
-14 122 103 114 109
-15 110 103 106 98
-16 110 123 134 127
-17 111 124 135 128
-18 99 111 104 107
-19 112 126 107 120
-20 113 136 129 119
-21 123 114 130 142
-22 143 124 115 131
-23 121 132 116 108
-24 100 102 105 97
-25 101 112 117 109
-26 143 124 115 131
-27 133 145 137 117
-28 146 127 138 118
-29 113 136 129 119
-30 146 127 138 118
-31 147 128 139 120
-32 121 140 151 131
-33 122 133 141 153
-34 110 123 134 127
-35 123 114 130 142
-36 99 101 97 98
-37 125 105 116 119
-38 122 133 141 153
-39 144 156 125 148
-40 157 126 137 149
-41 147 128 139 120
-42 111 124 135 128
-43 157 126 137 149
-44 138 149 139 129
-45 150 161 130 141
-46 132 144 152 164
-47 133 145 137 117
-48 121 140 151 131
-49 132 144 152 164
-50 154 166 134 158
-51 155 167 135 159
-52 136 147 148 159
-53 138 149 139 129
-54 136 147 148 159
-55 160 171 140 152
-56 154 162 173 142
-57 143 155 163 174
-58 144 156 125 148
-59 150 161 130 141
-60 154 162 173 142
-61 143 155 163 174
-62 165 176 145 168
-63 146 157 168 158
-64 146 157 168 158
-65 178 169 150 162
-66 179 170 151 163
-67 179 170 151 163
-68 165 181 172 153
-69 154 166 134 158
-70 155 167 135 159
-71 160 171 140 152
-72 165 181 172 153
-73 156 167 183 175
-74 177 169 170 160
-75 177 161 172 184
-76 177 161 172 184
-77 187 180 164 175
-78 165 176 145 168
-79 178 169 150 162
-80 187 180 164 175
-81 176 166 188 182
-82 156 167 183 175
-83 177 169 170 160
-84 178 180 171 185
-85 178 180 171 185
-86 190 182 173 185
-87 191 183 174 186
-88 190 182 173 185
-89 191 183 174 186
-90 176 166 188 182
-91 189 179 184 186
-92 189 179 184 186
-93 188 189 181 192
-94 188 189 181 192
-95 187 190 191 192
-96 187 190 191 192
-97 1 2 24 36
-98 1 3 36 15
-99 1 36 4 18
-100 2 24 5 9
-101 1 25 36 6
-102 11 2 24 7
-103 3 14 15 8
-104 4 5 18 9
-105 2 24 37 10
-106 11 3 15 7
-107 12 4 18 19
-108 23 13 5 9
-109 14 25 6 8
-110 34 3 15 16
-111 4 17 18 42
-112 12 25 6 19
-113 11 7 29 20
-114 35 14 8 21
-115 22 26 5 9
-116 23 13 37 10
-117 25 47 27 6
-118 11 28 7 30
-119 37 29 20 10
-120 12 19 41 31
-121 23 13 48 32
-122 33 14 38 8
-123 34 35 16 21
-124 22 26 17 42
-125 58 37 39 10
-126 12 40 19 43
-127 34 16 28 30
-128 17 41 31 42
-129 44 29 20 53
-130 45 35 59 21
-131 22 26 48 32
-132 23 13 46 49
-133 33 47 27 38
-134 34 69 16 50
-135 70 17 51 42
-136 29 52 20 54
-137 47 27 40 43
-138 44 28 30 53
-139 44 41 31 53
-140 55 48 71 32
-141 33 45 59 38
-142 56 35 60 21
-143 22 57 26 61
-144 46 58 49 39
-145 78 47 27 62
-146 28 30 63 64
-147 41 52 31 54
-148 58 39 52 54
-149 44 40 53 43
-150 45 79 59 65
-151 66 67 48 32
-152 55 46 49 71
-153 33 68 38 72
-154 56 69 60 50
-155 57 70 61 51
-156 58 82 39 73
-157 40 63 64 43
-158 69 50 63 64
-159 70 51 52 54
-160 55 71 83 74
-161 45 59 75 76
-162 56 79 60 65
-163 66 67 57 61
-164 77 46 80 49
-165 78 68 72 62
-166 90 69 81 50
-167 70 82 51 73
-168 78 62 63 64
-169 79 83 74 65
-170 66 67 83 74
-171 55 71 84 85
-172 68 72 75 76
-173 88 56 60 86
-174 89 57 61 87
-175 77 80 82 73
-176 78 90 81 62
-177 83 74 75 76
-178 79 84 85 65
-179 66 67 91 92
-180 77 80 84 85
-181 68 93 72 94
-182 88 90 81 86
-183 89 82 73 87
-184 91 92 75 76
-185 88 84 85 86
-186 89 91 92 87
-187 77 80 95 96
-188 90 81 93 94
-189 91 92 93 94
-190 88 95 96 86
-191 89 95 96 87
-192 93 94 95 96
0

**************