[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 192, 139 ] =
PL(CS(W(12,2)[12^4],0)).
(I) Following is a form readable by MAGMA:
g:=Graph<192|{ {89, 125}, {90, 126}, {89, 126}, {90, 125}, {86, 126}, {86, 127},
{85, 127}, {85, 126}, {42, 107}, {45, 108}, {41, 107}, {47, 109}, {46, 108},
{61, 121}, {41, 108}, {42, 108}, {62, 121}, {33, 105}, {48, 120}, {34, 106},
{50, 123}, {49, 123}, {33, 106}, {34, 105}, {38, 106}, {45, 97}, {54, 122}, {38,
107}, {49, 124}, {54, 123}, {37, 107}, {50, 124}, {53, 123}, {37, 106}, {46,
97}, {53, 122}, {39, 119}, {36, 117}, {39, 118}, {36, 118}, {47, 125}, {46,
124}, {43, 120}, {47, 124}, {46, 125}, {32, 116}, {44, 120}, {32, 117}, {35,
118}, {35, 117}, {47, 120}, {44, 119}, {35, 127}, {43, 119}, {34, 127}, {48,
109}, {40, 118}, {40, 119}, {1, 97}, {16, 112}, {2, 98}, {16, 113}, {19, 114},
{19, 113}, {1, 98}, {12, 111}, {2, 97}, {6, 98}, {23, 115}, {11, 111}, {6, 99},
{23, 114}, {20, 113}, {5, 99}, {20, 114}, {8, 110}, {5, 98}, {8, 111}, {7, 111},
{28, 116}, {27, 115}, {13, 101}, {4, 109}, {13, 100}, {10, 99}, {7, 110}, {4,
110}, {31, 117}, {24, 114}, {14, 100}, {9, 99}, {14, 101}, {31, 116}, {24, 115},
{3, 110}, {9, 100}, {3, 109}, {10, 100}, {27, 116}, {28, 115}, {10, 122}, {22,
102}, {11, 122}, {25, 104}, {22, 103}, {11, 121}, {26, 104}, {21, 103}, {10,
121}, {21, 102}, {17, 101}, {29, 105}, {18, 102}, {29, 104}, {30, 104}, {17,
102}, {30, 105}, {18, 101}, {11, 112}, {12, 112}, {26, 103}, {15, 113}, {25,
103}, {15, 112}, {64, 192}, {26, 152}, {37, 167}, {52, 182}, {61, 191}, {27,
152}, {37, 166}, {52, 183}, {42, 172}, {49, 183}, {43, 173}, {42, 173}, {49,
182}, {43, 172}, {12, 133}, {60, 181}, {12, 134}, {62, 180}, {63, 180}, {9,
133}, {27, 151}, {57, 181}, {63, 179}, {26, 151}, {62, 179}, {40, 166}, {58,
180}, {9, 134}, {40, 167}, {59, 180}, {2, 146}, {41, 185}, {3, 146}, {41, 184},
{3, 145}, {59, 169}, {2, 145}, {58, 169}, {22, 130}, {44, 184}, {23, 131}, {22,
131}, {44, 185}, {23, 130}, {24, 142}, {24, 143}, {50, 170}, {51, 171}, {4,
157}, {50, 171}, {51, 170}, {4, 158}, {21, 143}, {15, 149}, {14, 148}, {14,
149}, {32, 187}, {21, 142}, {15, 148}, {59, 160}, {1, 157}, {32, 188}, {60,
160}, {1, 158}, {18, 178}, {19, 179}, {18, 179}, {29, 188}, {19, 178}, {34,
128}, {35, 128}, {60, 159}, {45, 137}, {54, 146}, {55, 147}, {59, 159}, {45,
136}, {54, 147}, {55, 146}, {29, 187}, {56, 158}, {56, 159}, {36, 140}, {58,
147}, {20, 190}, {33, 139}, {53, 159}, {57, 147}, {20, 191}, {53, 158}, {6,
170}, {13, 161}, {7, 170}, {33, 140}, {13, 160}, {57, 148}, {7, 169}, {30, 176},
{17, 191}, {58, 148}, {6, 169}, {36, 139}, {31, 176}, {17, 190}, {63, 144}, {5,
181}, {31, 175}, {16, 160}, {55, 135}, {16, 161}, {30, 175}, {55, 134}, {5,
182}, {52, 135}, {51, 135}, {28, 164}, {48, 136}, {48, 137}, {61, 132}, {25,
163}, {62, 132}, {63, 133}, {51, 136}, {38, 154}, {39, 155}, {52, 136}, {8,
181}, {39, 154}, {38, 155}, {25, 164}, {8, 182}, {56, 134}, {28, 163}, {56,
135}, {91, 155}, {66, 131}, {93, 156}, {90, 155}, {76, 141}, {65, 131}, {95,
157}, {94, 156}, {76, 142}, {79, 141}, {79, 140}, {64, 133}, {65, 132}, {75,
142}, {66, 132}, {90, 156}, {75, 141}, {91, 156}, {73, 129}, {96, 168}, {74,
130}, {81, 153}, {82, 154}, {68, 143}, {73, 130}, {74, 129}, {81, 154}, {82,
153}, {67, 143}, {93, 145}, {77, 129}, {77, 128}, {78, 128}, {78, 129}, {94,
145}, {64, 144}, {70, 150}, {70, 151}, {91, 138}, {69, 151}, {91, 137}, {88,
138}, {67, 144}, {88, 139}, {69, 150}, {66, 150}, {68, 144}, {67, 150}, {92,
137}, {67, 149}, {92, 138}, {78, 152}, {79, 153}, {66, 149}, {96, 183}, {78,
153}, {79, 152}, {96, 184}, {80, 140}, {87, 139}, {80, 141}, {87, 138}, {65,
161}, {88, 185}, {88, 186}, {65, 162}, {71, 163}, {68, 161}, {93, 184}, {71,
162}, {68, 162}, {77, 165}, {77, 164}, {72, 162}, {93, 183}, {81, 187}, {72,
163}, {81, 186}, {85, 185}, {84, 186}, {84, 187}, {85, 186}, {76, 188}, {76,
189}, {89, 168}, {84, 165}, {84, 166}, {94, 172}, {95, 172}, {70, 178}, {95,
171}, {92, 168}, {73, 189}, {80, 164}, {71, 178}, {94, 171}, {83, 166}, {72,
189}, {73, 188}, {80, 165}, {71, 177}, {83, 165}, {72, 190}, {70, 177}, {95,
168}, {69, 189}, {86, 174}, {57, 192}, {87, 174}, {74, 176}, {87, 173}, {75,
177}, {69, 190}, {92, 167}, {86, 173}, {74, 177}, {75, 176}, {60, 192}, {83,
175}, {82, 174}, {61, 192}, {96, 157}, {83, 174}, {82, 175}, {89, 167}, {64,
191} }>;
(II) A more general form is to represent the graph as the orbit of {89, 125}
under the group generated by the following permutations:
a: (5, 6)(7, 8)(17, 18)(19, 20)(29, 30)(31, 32)(41, 42)(43, 44)(49, 50)(51,
52)(57, 58)(59, 60)(61, 62)(63, 64)(69, 70)(71, 72)(73, 74)(75, 76)(81, 82)(83,
84)(85, 86)(87, 88)(93, 94)(95, 96)(169, 181)(170, 182)(171, 183)(172, 184)(173,
185)(174, 186)(175, 187)(176, 188)(177, 189)(178, 190)(179, 191)(180, 192) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (5, 45)(6, 46)(7, 47)(8, 48)(9, 41)(10, 42)(11, 43)(12, 44)(13, 37)(14,
38)(15, 39)(16, 40)(17, 33)(18, 34)(19, 35)(20, 36)(21, 29)(22, 30)(23, 31)(24,
32)(49, 51)(53, 95)(54, 94)(55, 93)(56, 96)(57, 91)(58, 90)(59, 89)(60, 92)(61,
87)(62, 86)(63, 85)(64, 88)(65, 83)(66, 82)(67, 81)(68, 84)(69, 79)(70, 78)(71,
77)(72, 80)(73, 75)(97, 98)(99, 108)(100, 107)(101, 106)(102, 105)(103,
104)(109, 110)(111, 120)(112, 119)(113, 118)(114, 117)(115, 116)(121, 173)(122,
172)(123, 171)(124, 170)(125, 169)(126, 180)(127, 179)(128, 178)(129, 177)(130,
176)(131, 175)(132, 174)(133, 185)(134, 184)(135, 183)(136, 182)(137, 181)(138,
192)(139, 191)(140, 190)(141, 189)(142, 188)(143, 187)(144, 186)(145, 146)(147,
156)(148, 155)(149, 154)(150, 153)(151, 152)(157, 158)(159, 168)(160, 167)(161,
166)(162, 165)(163, 164)
c: (1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45)(2, 6, 10, 14, 18, 22, 26, 30,
34, 38, 42, 46)(3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47)(4, 8, 12, 16, 20,
24, 28, 32, 36, 40, 44, 48)(49, 55, 59, 61, 67, 71, 73, 79, 83, 85, 91, 95)(50,
54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94)(51, 53, 57, 63, 65, 69, 75, 77, 81,
87, 89, 93)(52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96)(97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108)(109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120)(121, 149, 178, 130, 152, 175, 127, 155, 172, 124, 146,
169)(122, 148, 179, 131, 151, 176, 128, 154, 173, 125, 145, 170)(123, 147, 180,
132, 150, 177, 129, 153, 174, 126, 156, 171)(133, 161, 190, 142, 164, 187, 139,
167, 184, 136, 158, 181)(134, 160, 191, 143, 163, 188, 140, 166, 185, 137, 157,
182)(135, 159, 192, 144, 162, 189, 141, 165, 186, 138, 168, 183)
d: (2, 4)(5, 56, 6, 53)(7, 54, 8, 55)(9, 59, 10, 60)(11, 57, 12, 58)(14, 16)(17,
68, 18, 65)(19, 66, 20, 67)(21, 71, 22, 72)(23, 69, 24, 70)(26, 28)(29, 80, 30,
77)(31, 78, 32, 79)(33, 83, 34, 84)(35, 81, 36, 82)(38, 40)(41, 92, 42, 89)(43,
90, 44, 91)(45, 95, 46, 96)(47, 93, 48, 94)(49, 52, 51, 50)(61, 64, 63, 62)(73,
76, 75, 74)(85, 88, 87, 86)(97, 157)(98, 158)(99, 159)(100, 160)(101, 161)(102,
162)(103, 163)(104, 164)(105, 165)(106, 166)(107, 167)(108, 168)(109, 145)(110,
146)(111, 147)(112, 148)(113, 149)(114, 150)(115, 151)(116, 152)(117, 153)(118,
154)(119, 155)(120, 156)(121, 192, 133, 180)(122, 181, 134, 169)(123, 182, 135,
170)(124, 183, 136, 171)(125, 184, 137, 172)(126, 185, 138, 173)(127, 186, 139,
174)(128, 187, 140, 175)(129, 188, 141, 176)(130, 189, 142, 177)(131, 190, 143,
178)(132, 191, 144, 179)
e: (1, 2)(3, 4)(13, 14)(15, 16)(25, 26)(27, 28)(37, 38)(39, 40)(53, 54)(55,
56)(57, 60)(58, 59)(65, 66)(67, 68)(69, 72)(70, 71)(77, 78)(79, 80)(81, 84)(82,
83)(89, 90)(91, 92)(93, 96)(94, 95)(145, 157)(146, 158)(147, 159)(148, 160)(149,
161)(150, 162)(151, 163)(152, 164)(153, 165)(154, 166)(155, 167)(156, 168)
f: (9, 10)(11, 12)(21, 22)(23, 24)(33, 34)(35, 36)(45, 46)(47, 48)(49, 52)(50,
51)(53, 56)(54, 55)(61, 64)(62, 63)(65, 68)(66, 67)(73, 76)(74, 75)(77, 80)(78,
79)(85, 88)(86, 87)(89, 92)(90, 91)(121, 133)(122, 134)(123, 135)(124, 136)(125,
137)(126, 138)(127, 139)(128, 140)(129, 141)(130, 142)(131, 143)(132, 144)
C4[ 192, 139 ]
192
-1 157 158 97 98
-2 145 146 97 98
-3 110 145 146 109
-4 110 157 158 109
-5 99 181 182 98
-6 99 169 170 98
-7 110 111 169 170
-8 110 111 181 182
-9 99 100 133 134
-10 99 121 100 122
-11 121 111 122 112
-12 111 133 112 134
-13 100 101 160 161
-14 100 101 148 149
-15 112 113 148 149
-16 112 113 160 161
-17 101 102 190 191
-18 101 178 102 179
-19 178 113 179 114
-20 113 190 114 191
-21 143 102 103 142
-22 102 103 130 131
-23 114 115 130 131
-24 143 114 115 142
-25 103 104 163 164
-26 103 104 151 152
-27 115 116 151 152
-28 115 116 163 164
-29 187 188 104 105
-30 176 104 105 175
-31 176 116 117 175
-32 187 188 116 117
-33 105 106 139 140
-34 105 127 106 128
-35 127 117 128 118
-36 117 139 118 140
-37 166 167 106 107
-38 154 155 106 107
-39 154 155 118 119
-40 166 167 118 119
-41 107 184 108 185
-42 172 107 173 108
-43 172 173 119 120
-44 184 119 185 120
-45 136 137 97 108
-46 124 125 97 108
-47 124 125 109 120
-48 136 137 109 120
-49 123 124 182 183
-50 123 124 170 171
-51 135 136 170 171
-52 135 136 182 183
-53 122 123 158 159
-54 122 123 146 147
-55 134 135 146 147
-56 134 135 158 159
-57 147 148 181 192
-58 147 169 180 148
-59 169 180 159 160
-60 159 181 192 160
-61 121 132 191 192
-62 121 132 179 180
-63 133 144 179 180
-64 133 144 191 192
-65 132 161 162 131
-66 132 149 150 131
-67 143 144 149 150
-68 143 144 161 162
-69 189 190 150 151
-70 177 178 150 151
-71 177 178 162 163
-72 189 190 162 163
-73 188 189 129 130
-74 176 177 129 130
-75 176 177 141 142
-76 188 189 141 142
-77 165 128 129 164
-78 128 129 152 153
-79 140 141 152 153
-80 165 140 141 164
-81 154 187 153 186
-82 154 174 153 175
-83 165 166 174 175
-84 165 187 166 186
-85 126 127 185 186
-86 126 127 173 174
-87 138 139 173 174
-88 138 139 185 186
-89 167 168 125 126
-90 155 156 125 126
-91 155 156 137 138
-92 167 168 137 138
-93 145 156 183 184
-94 145 156 171 172
-95 157 168 171 172
-96 157 168 183 184
-97 1 45 2 46
-98 1 2 5 6
-99 5 6 9 10
-100 13 14 9 10
-101 13 14 17 18
-102 22 17 18 21
-103 22 25 26 21
-104 25 26 29 30
-105 33 34 29 30
-106 33 34 37 38
-107 37 38 41 42
-108 45 46 41 42
-109 3 47 4 48
-110 3 4 7 8
-111 11 12 7 8
-112 11 12 15 16
-113 15 16 19 20
-114 23 24 19 20
-115 23 24 27 28
-116 27 28 31 32
-117 35 36 31 32
-118 35 36 39 40
-119 44 39 40 43
-120 44 47 48 43
-121 11 61 62 10
-122 11 53 10 54
-123 49 50 53 54
-124 46 47 49 50
-125 89 46 90 47
-126 89 90 85 86
-127 34 35 85 86
-128 77 34 78 35
-129 77 78 73 74
-130 22 23 73 74
-131 22 66 23 65
-132 66 61 62 65
-133 12 63 9 64
-134 55 12 56 9
-135 55 56 51 52
-136 45 48 51 52
-137 45 91 48 92
-138 88 91 92 87
-139 33 88 36 87
-140 33 79 36 80
-141 79 80 75 76
-142 24 75 21 76
-143 67 24 68 21
-144 67 68 63 64
-145 2 3 93 94
-146 55 2 3 54
-147 55 57 58 54
-148 57 14 58 15
-149 66 67 14 15
-150 66 67 69 70
-151 69 26 70 27
-152 78 79 26 27
-153 78 79 81 82
-154 81 38 82 39
-155 90 91 38 39
-156 90 91 93 94
-157 1 4 95 96
-158 1 56 4 53
-159 56 59 60 53
-160 13 59 16 60
-161 13 68 16 65
-162 68 71 72 65
-163 25 71 28 72
-164 77 25 80 28
-165 77 80 83 84
-166 37 83 40 84
-167 89 37 92 40
-168 89 92 95 96
-169 58 59 6 7
-170 6 50 7 51
-171 50 94 51 95
-172 94 95 42 43
-173 42 86 43 87
-174 82 83 86 87
-175 82 83 30 31
-176 30 74 31 75
-177 70 71 74 75
-178 70 71 18 19
-179 18 62 19 63
-180 58 59 62 63
-181 57 5 60 8
-182 5 49 8 52
-183 49 93 52 96
-184 44 93 41 96
-185 44 88 41 85
-186 88 81 84 85
-187 81 29 84 32
-188 29 73 32 76
-189 69 72 73 76
-190 69 17 72 20
-191 17 61 20 64
-192 57 60 61 64
0