C4graphGraph forms for C4 [ 192, 141 ] = PL(CS(R_12(8,7)[6^8],1))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 141 ] = PL(CS(R_12(8,7)[6^8],1)).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {82, 114}, {89, 121}, {82, 115}, {81, 115}, {79, 108}, {81, 114}, {79, 107}, {91, 127}, {90, 126}, {90, 127}, {92, 121}, {91, 126}, {77, 101}, {78, 102}, {64, 106}, {64, 107}, {83, 120}, {77, 102}, {78, 101}, {84, 120}, {92, 108}, {75, 120}, {76, 120}, {64, 118}, {64, 119}, {91, 108}, {69, 125}, {70, 126}, {73, 113}, {74, 114}, {84, 109}, {91, 97}, {69, 126}, {70, 125}, {73, 114}, {74, 113}, {76, 119}, {80, 107}, {75, 119}, {90, 102}, {80, 108}, {90, 103}, {92, 97}, {83, 109}, {89, 103}, {89, 102}, {37, 100}, {46, 111}, {40, 105}, {38, 100}, {45, 111}, {40, 106}, {57, 125}, {38, 99}, {48, 117}, {57, 124}, {37, 99}, {48, 118}, {58, 124}, {58, 125}, {61, 119}, {61, 118}, {39, 106}, {39, 105}, {62, 112}, {63, 113}, {62, 113}, {63, 112}, {63, 107}, {63, 106}, {61, 101}, {47, 118}, {61, 100}, {38, 124}, {47, 117}, {62, 100}, {39, 124}, {62, 101}, {39, 123}, {38, 123}, {45, 112}, {46, 112}, {1, 97}, {26, 122}, {2, 98}, {26, 123}, {23, 117}, {25, 123}, {1, 98}, {25, 122}, {23, 116}, {4, 103}, {2, 97}, {3, 103}, {3, 104}, {2, 110}, {24, 116}, {4, 104}, {3, 110}, {24, 117}, {3, 109}, {2, 109}, {4, 116}, {18, 98}, {18, 99}, {1, 115}, {17, 99}, {17, 98}, {1, 116}, {4, 115}, {8, 127}, {7, 127}, {22, 110}, {22, 111}, {19, 105}, {21, 111}, {19, 104}, {21, 110}, {5, 121}, {20, 104}, {6, 122}, {20, 105}, {5, 122}, {6, 121}, {6, 134}, {19, 147}, {18, 146}, {51, 179}, {7, 134}, {19, 146}, {18, 147}, {51, 178}, {65, 192}, {7, 133}, {6, 133}, {8, 139}, {8, 140}, {68, 192}, {52, 178}, {7, 128}, {52, 179}, {8, 128}, {35, 171}, {23, 159}, {22, 158}, {17, 153}, {5, 140}, {44, 165}, {41, 160}, {34, 171}, {23, 158}, {22, 159}, {17, 152}, {42, 160}, {44, 166}, {50, 184}, {51, 185}, {52, 190}, {50, 185}, {51, 184}, {52, 191}, {20, 152}, {20, 153}, {43, 166}, {5, 139}, {43, 165}, {34, 172}, {49, 191}, {35, 172}, {49, 190}, {33, 177}, {44, 189}, {31, 141}, {44, 190}, {42, 184}, {53, 167}, {11, 152}, {43, 184}, {33, 178}, {31, 140}, {53, 166}, {10, 158}, {41, 189}, {12, 152}, {11, 158}, {85, 192}, {36, 177}, {11, 157}, {36, 178}, {54, 160}, {55, 161}, {10, 157}, {41, 190}, {54, 161}, {55, 160}, {9, 145}, {88, 192}, {30, 134}, {10, 146}, {30, 135}, {27, 129}, {29, 135}, {9, 146}, {29, 134}, {27, 128}, {12, 151}, {10, 145}, {11, 151}, {43, 183}, {32, 188}, {28, 128}, {49, 173}, {28, 129}, {42, 183}, {32, 189}, {49, 172}, {50, 172}, {56, 166}, {50, 173}, {56, 167}, {15, 175}, {45, 141}, {29, 189}, {16, 176}, {53, 149}, {29, 188}, {53, 148}, {54, 148}, {56, 154}, {45, 142}, {54, 149}, {56, 155}, {13, 169}, {37, 129}, {14, 170}, {46, 136}, {13, 170}, {37, 130}, {14, 169}, {47, 136}, {12, 164}, {31, 183}, {30, 182}, {25, 177}, {47, 135}, {25, 176}, {46, 135}, {40, 129}, {31, 182}, {30, 183}, {9, 163}, {40, 130}, {16, 187}, {16, 188}, {32, 140}, {28, 176}, {55, 155}, {9, 164}, {32, 141}, {28, 177}, {55, 154}, {12, 163}, {21, 165}, {27, 171}, {26, 170}, {13, 188}, {34, 147}, {27, 170}, {26, 171}, {21, 164}, {33, 147}, {58, 136}, {59, 137}, {60, 142}, {58, 137}, {59, 136}, {60, 143}, {33, 148}, {42, 159}, {13, 187}, {41, 159}, {34, 148}, {57, 143}, {57, 142}, {14, 182}, {59, 131}, {15, 182}, {35, 154}, {59, 130}, {15, 181}, {35, 153}, {14, 181}, {24, 164}, {24, 165}, {36, 153}, {48, 141}, {36, 154}, {48, 142}, {60, 130}, {15, 176}, {16, 175}, {60, 131}, {81, 144}, {71, 132}, {95, 156}, {71, 131}, {84, 144}, {88, 157}, {65, 137}, {94, 150}, {66, 138}, {94, 151}, {96, 169}, {87, 157}, {93, 151}, {65, 138}, {93, 150}, {80, 155}, {66, 137}, {68, 143}, {72, 131}, {67, 143}, {80, 156}, {72, 132}, {95, 145}, {77, 156}, {84, 133}, {67, 144}, {68, 144}, {96, 180}, {81, 133}, {77, 155}, {78, 150}, {92, 132}, {83, 139}, {82, 138}, {79, 150}, {83, 138}, {82, 139}, {79, 149}, {78, 149}, {89, 132}, {85, 181}, {73, 168}, {76, 168}, {70, 174}, {74, 162}, {71, 174}, {93, 180}, {75, 162}, {71, 173}, {75, 161}, {70, 173}, {74, 161}, {76, 167}, {86, 186}, {87, 187}, {86, 187}, {88, 181}, {87, 186}, {73, 167}, {88, 168}, {95, 175}, {94, 174}, {69, 180}, {96, 145}, {95, 174}, {94, 175}, {86, 162}, {93, 169}, {86, 163}, {69, 179}, {85, 163}, {85, 162}, {66, 186}, {67, 186}, {67, 185}, {66, 185}, {68, 191}, {72, 179}, {72, 180}, {96, 156}, {65, 191}, {87, 168} }>;

(II) A more general form is to represent the graph as the orbit of {82, 114} under the group generated by the following permutations:

a: (9, 12)(10, 11)(17, 18)(19, 20)(33, 36)(34, 35)(53, 56)(54, 55)(77, 78)(79, 80)(93, 96)(94, 95)(145, 151)(146, 152)(147, 153)(148, 154)(149, 155)(150, 156)
b: (9, 10)(11, 12)(21, 22)(23, 24)(41, 44)(42, 43)(53, 54)(55, 56)(73, 74)(75, 76)(85, 88)(86, 87)(157, 163)(158, 164)(159, 165)(160, 166)(161, 167)(162, 168)
c: (5, 8)(6, 7)(25, 28)(26, 27)(37, 38)(39, 40)(57, 60)(58, 59)(69, 72)(70, 71)(89, 90)(91, 92)(121, 127)(122, 128)(123, 129)(124, 130)(125, 131)(126, 132)
d: (5, 6)(7, 8)(29, 32)(30, 31)(45, 46)(47, 48)(57, 58)(59, 60)(65, 68)(66, 67)(81, 82)(83, 84)(133, 139)(134, 140)(135, 141)(136, 142)(137, 143)(138, 144)
e: (13, 14)(15, 16)(29, 30)(31, 32)(41, 42)(43, 44)(49, 50)(51, 52)(65, 66)(67, 68)(85, 86)(87, 88)(181, 187)(182, 188)(183, 189)(184, 190)(185, 191)(186, 192)
f: (1, 2)(3, 4)(21, 24)(22, 23)(45, 48)(46, 47)(61, 62)(63, 64)(73, 76)(74, 75)(81, 84)(82, 83)(109, 115)(110, 116)(111, 117)(112, 118)(113, 119)(114, 120)
g: (13, 15)(14, 16)(25, 26)(27, 28)(29, 30)(31, 32)(33, 34)(35, 36)(41, 42)(43, 44)(49, 51)(50, 52)(65, 66)(67, 68)(69, 70)(71, 72)(85, 86)(87, 88)(93, 94)(95, 96)(169, 175)(170, 176)(171, 177)(172, 178)(173, 179)(174, 180)(181, 187)(182, 188)(183, 189)(184, 190)(185, 191)(186, 192)
h: (2, 4)(5, 8, 7, 6)(9, 11)(14, 16)(17, 24)(18, 23)(19, 22)(20, 21)(25, 31, 28, 30)(26, 32, 27, 29)(33, 42)(34, 41)(35, 44)(36, 43)(37, 47, 38, 48)(39, 45, 40, 46)(50, 52)(53, 55)(57, 60, 59, 58)(62, 64)(65, 70, 68, 71)(66, 69, 67, 72)(73, 80)(74, 79)(75, 78)(76, 77)(81, 92, 82, 91)(83, 90, 84, 89)(85, 94)(86, 93)(87, 96)(88, 95)(97, 115)(98, 116)(99, 117)(100, 118)(101, 119)(102, 120)(103, 109)(104, 110)(105, 111)(106, 112)(107, 113)(108, 114)(121, 139, 127, 133)(122, 140, 128, 134)(123, 141, 129, 135)(124, 142, 130, 136)(125, 143, 131, 137)(126, 144, 132, 138)(145, 157)(146, 158)(147, 159)(148, 160)(149, 161)(150, 162)(151, 163)(152, 164)(153, 165)(154, 166)(155, 167)(156, 168)(169, 187)(170, 188)(171, 189)(172, 190)(173, 191)(174, 192)(175, 181)(176, 182)(177, 183)(178, 184)(179, 185)(180, 186)
m: (1, 5, 4, 8)(2, 6, 3, 7)(9, 13)(10, 14)(11, 15)(12, 16)(17, 25, 20, 28)(18, 26, 19, 27)(21, 29)(22, 30)(23, 31)(24, 32)(33, 35)(37, 38, 39, 40)(41, 43)(45, 47)(49, 53)(50, 54)(51, 55)(52, 56)(57, 64, 60, 61)(58, 63, 59, 62)(65, 73)(66, 74)(67, 75)(68, 76)(69, 80, 72, 77)(70, 79, 71, 78)(81, 83)(85, 87)(89, 90, 91, 92)(93, 95)(97, 121, 103, 127)(98, 122, 104, 128)(99, 123, 105, 129)(100, 124, 106, 130)(101, 125, 107, 131)(102, 126, 108, 132)(109, 133)(110, 134)(111, 135)(112, 136)(113, 137)(114, 138)(115, 139)(116, 140)(117, 141)(118, 142)(119, 143)(120, 144)(145, 169)(146, 170)(147, 171)(148, 172)(149, 173)(150, 174)(151, 175)(152, 176)(153, 177)(154, 178)(155, 179)(156, 180)(157, 181)(158, 182)(159, 183)(160, 184)(161, 185)(162, 186)(163, 187)(164, 188)(165, 189)(166, 190)(167, 191)(168, 192)
n1: (1, 17, 35, 49, 65, 82)(2, 20, 34, 52, 66, 81)(3, 19, 33, 51, 67, 84)(4, 18, 36, 50, 68, 83)(5, 24, 37, 55, 70, 88)(6, 21, 40, 54, 69, 87)(7, 22, 39, 53, 72, 86)(8, 23, 38, 56, 71, 85)(9, 28, 42, 57, 76, 89)(10, 25, 43, 60, 75, 90)(11, 26, 44, 59, 74, 91)(12, 27, 41, 58, 73, 92)(13, 29, 46, 63, 79, 93)(14, 32, 47, 62, 80, 94)(15, 31, 48, 61, 77, 95)(16, 30, 45, 64, 78, 96)(97, 152, 171, 190, 137, 114)(98, 153, 172, 191, 138, 115)(99, 154, 173, 192, 139, 116)(100, 155, 174, 181, 140, 117)(101, 156, 175, 182, 141, 118)(102, 145, 176, 183, 142, 119)(103, 146, 177, 184, 143, 120)(104, 147, 178, 185, 144, 109)(105, 148, 179, 186, 133, 110)(106, 149, 180, 187, 134, 111)(107, 150, 169, 188, 135, 112)(108, 151, 170, 189, 136, 113)(121, 164, 129, 160, 125, 168)(122, 165, 130, 161, 126, 157)(123, 166, 131, 162, 127, 158)(124, 167, 132, 163, 128, 159)
a1: (2, 4)(5, 9)(6, 12)(7, 11)(8, 10)(14, 16)(17, 81)(18, 82)(19, 83)(20, 84)(21, 89)(22, 90)(23, 91)(24, 92)(25, 85)(26, 86)(27, 87)(28, 88)(29, 93)(30, 94)(31, 95)(32, 96)(33, 65)(34, 66)(35, 67)(36, 68)(37, 73)(38, 74)(39, 75)(40, 76)(41, 69)(42, 70)(43, 71)(44, 72)(45, 77)(46, 78)(47, 79)(48, 80)(49, 51)(53, 59)(54, 58)(55, 57)(56, 60)(61, 63)(97, 116)(98, 115)(99, 114)(100, 113)(101, 112)(102, 111)(103, 110)(104, 109)(105, 120)(106, 119)(107, 118)(108, 117)(121, 164)(122, 163)(123, 162)(124, 161)(125, 160)(126, 159)(127, 158)(128, 157)(129, 168)(130, 167)(131, 166)(132, 165)(133, 152)(134, 151)(135, 150)(136, 149)(137, 148)(138, 147)(139, 146)(140, 145)(141, 156)(142, 155)(143, 154)(144, 153)(169, 188)(170, 187)(171, 186)(172, 185)(173, 184)(174, 183)(175, 182)(176, 181)(177, 192)(178, 191)(179, 190)(180, 189)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 141 ]
192
-1 115 116 97 98
-2 110 97 98 109
-3 110 103 104 109
-4 103 104 115 116
-5 121 122 139 140
-6 121 122 133 134
-7 133 134 127 128
-8 127 128 139 140
-9 145 146 163 164
-10 145 146 157 158
-11 157 158 151 152
-12 151 152 163 164
-13 187 188 169 170
-14 169 170 181 182
-15 176 181 182 175
-16 176 187 188 175
-17 99 152 98 153
-18 99 146 147 98
-19 146 147 104 105
-20 104 105 152 153
-21 110 165 111 164
-22 110 111 158 159
-23 158 159 116 117
-24 165 116 117 164
-25 176 122 177 123
-26 122 123 170 171
-27 170 171 128 129
-28 176 177 128 129
-29 188 134 189 135
-30 134 135 182 183
-31 182 183 140 141
-32 188 189 140 141
-33 177 178 147 148
-34 147 148 171 172
-35 154 171 172 153
-36 154 177 178 153
-37 99 100 129 130
-38 99 100 123 124
-39 123 124 105 106
-40 105 106 129 130
-41 189 190 159 160
-42 159 160 183 184
-43 165 166 183 184
-44 165 166 189 190
-45 111 112 141 142
-46 111 112 135 136
-47 135 136 117 118
-48 117 118 141 142
-49 190 191 172 173
-50 172 173 184 185
-51 178 179 184 185
-52 178 179 190 191
-53 166 167 148 149
-54 148 149 160 161
-55 154 155 160 161
-56 154 155 166 167
-57 143 124 125 142
-58 124 125 136 137
-59 136 137 130 131
-60 143 130 131 142
-61 100 101 118 119
-62 100 101 112 113
-63 112 113 106 107
-64 106 107 118 119
-65 191 137 192 138
-66 137 138 185 186
-67 143 144 185 186
-68 143 144 191 192
-69 179 125 180 126
-70 125 126 173 174
-71 132 173 174 131
-72 132 179 180 131
-73 167 113 168 114
-74 113 114 161 162
-75 161 162 119 120
-76 167 168 119 120
-77 155 101 156 102
-78 101 102 149 150
-79 149 150 107 108
-80 155 156 107 108
-81 133 144 114 115
-82 114 115 138 139
-83 138 139 109 120
-84 133 144 109 120
-85 181 192 162 163
-86 187 162 163 186
-87 187 157 168 186
-88 157 168 181 192
-89 121 132 102 103
-90 102 103 126 127
-91 126 127 97 108
-92 121 132 97 108
-93 169 180 150 151
-94 150 151 174 175
-95 145 156 174 175
-96 145 156 169 180
-97 1 2 91 92
-98 1 2 17 18
-99 37 38 17 18
-100 37 38 61 62
-101 77 78 61 62
-102 77 78 89 90
-103 89 90 3 4
-104 3 4 19 20
-105 39 40 19 20
-106 39 40 63 64
-107 79 80 63 64
-108 79 80 91 92
-109 2 3 83 84
-110 22 2 3 21
-111 22 45 46 21
-112 45 46 62 63
-113 62 73 63 74
-114 81 82 73 74
-115 1 4 81 82
-116 1 23 24 4
-117 23 24 47 48
-118 47 48 61 64
-119 61 64 75 76
-120 83 84 75 76
-121 89 92 5 6
-122 25 26 5 6
-123 25 26 38 39
-124 57 58 38 39
-125 57 58 69 70
-126 90 69 91 70
-127 90 91 7 8
-128 27 28 7 8
-129 37 27 28 40
-130 37 59 60 40
-131 59 60 71 72
-132 89 92 71 72
-133 81 6 7 84
-134 6 7 29 30
-135 46 47 29 30
-136 46 47 58 59
-137 66 58 59 65
-138 66 82 83 65
-139 5 82 83 8
-140 5 8 31 32
-141 45 48 31 32
-142 45 57 48 60
-143 67 57 68 60
-144 67 68 81 84
-145 95 96 9 10
-146 18 19 9 10
-147 33 34 18 19
-148 33 34 53 54
-149 78 79 53 54
-150 78 79 93 94
-151 11 12 93 94
-152 11 12 17 20
-153 35 36 17 20
-154 55 56 35 36
-155 55 77 56 80
-156 77 80 95 96
-157 11 88 10 87
-158 11 22 23 10
-159 22 23 41 42
-160 55 41 42 54
-161 55 74 75 54
-162 74 85 75 86
-163 12 85 9 86
-164 12 24 9 21
-165 44 24 21 43
-166 44 56 53 43
-167 56 73 53 76
-168 88 73 76 87
-169 13 14 93 96
-170 13 14 26 27
-171 34 35 26 27
-172 34 35 49 50
-173 70 49 71 50
-174 70 71 94 95
-175 15 16 94 95
-176 25 15 16 28
-177 33 25 36 28
-178 33 36 51 52
-179 69 72 51 52
-180 69 93 72 96
-181 88 14 15 85
-182 14 15 30 31
-183 30 31 42 43
-184 50 51 42 43
-185 66 67 50 51
-186 66 67 86 87
-187 13 16 86 87
-188 13 16 29 32
-189 44 29 41 32
-190 44 49 41 52
-191 68 49 52 65
-192 88 68 85 65
0

**************