C4graphGraph forms for C4 [ 192, 148 ] = PL(CS(R_12(5,10)[6^8],0))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 148 ] = PL(CS(R_12(5,10)[6^8],0)).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {79, 108}, {74, 111}, {73, 111}, {78, 102}, {79, 103}, {81, 121}, {77, 102}, {84, 127}, {82, 121}, {77, 97}, {83, 127}, {82, 126}, {78, 97}, {81, 126}, {80, 103}, {73, 112}, {76, 117}, {74, 112}, {76, 118}, {80, 108}, {75, 118}, {75, 117}, {46, 110}, {50, 114}, {51, 115}, {46, 111}, {58, 123}, {45, 111}, {57, 123}, {45, 110}, {49, 114}, {48, 116}, {48, 117}, {57, 124}, {58, 124}, {52, 115}, {32, 107}, {51, 120}, {32, 108}, {52, 120}, {53, 100}, {56, 105}, {54, 100}, {56, 106}, {54, 99}, {53, 99}, {47, 117}, {47, 116}, {33, 125}, {34, 126}, {49, 109}, {55, 106}, {55, 105}, {33, 126}, {34, 125}, {50, 109}, {1, 97}, {24, 120}, {23, 119}, {8, 104}, {2, 98}, {8, 105}, {30, 124}, {31, 125}, {1, 98}, {31, 124}, {30, 125}, {4, 103}, {2, 97}, {3, 103}, {22, 114}, {21, 113}, {6, 98}, {6, 99}, {5, 99}, {5, 98}, {22, 113}, {21, 114}, {26, 112}, {28, 118}, {27, 113}, {3, 104}, {28, 119}, {27, 112}, {26, 113}, {2, 110}, {4, 104}, {3, 110}, {3, 109}, {25, 119}, {7, 105}, {2, 109}, {25, 118}, {24, 119}, {23, 120}, {7, 104}, {4, 116}, {27, 107}, {10, 122}, {10, 123}, {27, 106}, {1, 115}, {9, 123}, {9, 122}, {31, 108}, {31, 107}, {1, 116}, {28, 106}, {4, 115}, {28, 107}, {8, 127}, {29, 101}, {30, 102}, {5, 127}, {29, 102}, {30, 101}, {6, 122}, {25, 101}, {7, 122}, {25, 100}, {7, 121}, {26, 100}, {6, 121}, {26, 101}, {12, 140}, {18, 146}, {54, 182}, {61, 189}, {18, 147}, {49, 176}, {55, 182}, {61, 188}, {9, 139}, {17, 147}, {15, 141}, {55, 181}, {15, 140}, {17, 146}, {54, 181}, {56, 187}, {52, 176}, {56, 188}, {5, 128}, {9, 140}, {45, 168}, {12, 139}, {16, 151}, {8, 128}, {23, 159}, {22, 158}, {16, 152}, {14, 134}, {57, 177}, {62, 182}, {63, 183}, {14, 135}, {23, 158}, {22, 159}, {53, 188}, {57, 176}, {62, 183}, {63, 182}, {11, 129}, {43, 161}, {42, 160}, {19, 153}, {13, 135}, {44, 166}, {45, 167}, {11, 128}, {43, 160}, {42, 161}, {19, 152}, {13, 134}, {44, 167}, {10, 134}, {20, 152}, {18, 158}, {12, 128}, {46, 162}, {60, 176}, {11, 134}, {20, 153}, {19, 158}, {12, 129}, {47, 162}, {60, 177}, {11, 133}, {41, 167}, {19, 157}, {47, 161}, {53, 187}, {10, 133}, {41, 166}, {18, 157}, {46, 161}, {58, 170}, {59, 171}, {58, 171}, {59, 170}, {13, 152}, {85, 192}, {48, 167}, {48, 168}, {88, 192}, {50, 170}, {51, 170}, {13, 151}, {51, 169}, {50, 169}, {52, 175}, {14, 146}, {16, 140}, {15, 146}, {93, 192}, {16, 141}, {15, 145}, {29, 131}, {49, 175}, {14, 145}, {29, 130}, {35, 131}, {96, 192}, {36, 132}, {32, 130}, {32, 131}, {35, 132}, {40, 143}, {36, 131}, {39, 143}, {34, 136}, {36, 142}, {35, 137}, {34, 137}, {36, 143}, {35, 136}, {37, 137}, {38, 138}, {33, 143}, {33, 142}, {38, 137}, {37, 138}, {20, 164}, {43, 155}, {21, 165}, {44, 156}, {21, 164}, {63, 142}, {17, 163}, {40, 154}, {39, 149}, {38, 148}, {63, 141}, {38, 149}, {40, 155}, {39, 148}, {17, 164}, {61, 136}, {62, 136}, {20, 163}, {43, 156}, {39, 144}, {44, 155}, {40, 144}, {59, 130}, {62, 135}, {59, 129}, {61, 135}, {24, 164}, {42, 150}, {41, 149}, {24, 165}, {60, 129}, {37, 155}, {60, 130}, {37, 154}, {42, 149}, {41, 150}, {92, 156}, {93, 157}, {94, 157}, {96, 163}, {87, 144}, {91, 156}, {88, 144}, {96, 168}, {89, 145}, {90, 145}, {92, 151}, {90, 150}, {91, 151}, {64, 141}, {64, 142}, {89, 150}, {84, 132}, {85, 133}, {66, 147}, {65, 147}, {86, 133}, {88, 139}, {65, 148}, {66, 148}, {83, 132}, {67, 154}, {70, 159}, {67, 153}, {69, 159}, {96, 187}, {86, 138}, {87, 139}, {68, 153}, {68, 154}, {85, 138}, {84, 180}, {71, 166}, {71, 165}, {81, 179}, {94, 186}, {69, 160}, {95, 186}, {81, 180}, {70, 160}, {93, 187}, {74, 172}, {75, 173}, {74, 173}, {88, 191}, {84, 179}, {75, 172}, {67, 171}, {92, 180}, {66, 171}, {85, 191}, {95, 181}, {94, 181}, {86, 186}, {72, 165}, {89, 180}, {87, 186}, {66, 172}, {87, 185}, {72, 166}, {80, 190}, {67, 172}, {86, 185}, {80, 191}, {65, 177}, {71, 183}, {70, 183}, {77, 191}, {91, 169}, {65, 178}, {92, 175}, {90, 169}, {77, 190}, {90, 174}, {68, 177}, {91, 174}, {72, 189}, {68, 178}, {89, 175}, {72, 190}, {78, 184}, {79, 185}, {78, 185}, {95, 168}, {79, 184}, {69, 189}, {73, 179}, {69, 190}, {73, 178}, {64, 188}, {95, 163}, {94, 162}, {82, 174}, {64, 189}, {83, 174}, {70, 184}, {83, 173}, {76, 178}, {71, 184}, {93, 162}, {82, 173}, {76, 179} }>;

(II) A more general form is to represent the graph as the orbit of {79, 108} under the group generated by the following permutations:

a: (9, 10)(11, 12)(13, 16)(14, 15)(33, 34)(35, 36)(37, 40)(38, 39)(61, 64)(62, 63)(85, 88)(86, 87)(133, 139)(134, 140)(135, 141)(136, 142)(137, 143)(138, 144)
b: (53, 54)(55, 56)(61, 62)(63, 64)(69, 70)(71, 72)(77, 78)(79, 80)(85, 86)(87, 88)(93, 94)(95, 96)(181, 187)(182, 188)(183, 189)(184, 190)(185, 191)(186, 192)
c: (13, 14)(15, 16)(17, 19)(18, 20)(21, 22)(23, 24)(37, 38)(39, 40)(41, 43)(42, 44)(45, 46)(47, 48)(65, 68)(66, 67)(69, 72)(70, 71)(89, 92)(90, 91)(93, 96)(94, 95)(145, 151)(146, 152)(147, 153)(148, 154)(149, 155)(150, 156)(157, 163)(158, 164)(159, 165)(160, 166)(161, 167)(162, 168)
d: (17, 18)(19, 20)(21, 22)(23, 24)(41, 42)(43, 44)(45, 46)(47, 48)(69, 72)(70, 71)(93, 96)(94, 95)(157, 163)(158, 164)(159, 165)(160, 166)(161, 167)(162, 168)
e: (1, 2)(3, 4)(21, 24)(22, 23)(25, 26)(27, 28)(45, 48)(46, 47)(49, 52)(50, 51)(73, 76)(74, 75)(109, 115)(110, 116)(111, 117)(112, 118)(113, 119)(114, 120)
f: (49, 50)(51, 52)(57, 58)(59, 60)(65, 66)(67, 68)(73, 74)(75, 76)(81, 82)(83, 84)(89, 90)(91, 92)(169, 175)(170, 176)(171, 177)(172, 178)(173, 179)(174, 180)
g: (5, 6)(7, 8)(9, 11)(10, 12)(13, 16)(14, 15)(29, 30)(31, 32)(33, 35)(34, 36)(37, 40)(38, 39)(57, 60)(58, 59)(61, 64)(62, 63)(81, 84)(82, 83)(85, 88)(86, 87)(121, 127)(122, 128)(123, 129)(124, 130)(125, 131)(126, 132)(133, 139)(134, 140)(135, 141)(136, 142)(137, 143)(138, 144)
h: (2, 4)(5, 47)(6, 48)(7, 45)(8, 46)(9, 41)(10, 44)(11, 43)(12, 42)(13, 37)(14, 40)(15, 39)(16, 38)(17, 33)(18, 36)(19, 35)(20, 34)(21, 31)(22, 32)(23, 29)(24, 30)(26, 28)(49, 80)(50, 79)(51, 78)(52, 77)(53, 76)(54, 75)(55, 74)(56, 73)(57, 72)(58, 71)(59, 70)(60, 69)(61, 68)(62, 67)(63, 66)(64, 65)(81, 96)(82, 95)(83, 94)(84, 93)(85, 92)(86, 91)(87, 90)(88, 89)(97, 115)(98, 116)(99, 117)(100, 118)(101, 119)(102, 120)(103, 109)(104, 110)(105, 111)(106, 112)(107, 113)(108, 114)(121, 168)(122, 167)(123, 166)(124, 165)(125, 164)(126, 163)(127, 162)(128, 161)(129, 160)(130, 159)(131, 158)(132, 157)(133, 156)(134, 155)(135, 154)(136, 153)(137, 152)(138, 151)(139, 150)(140, 149)(141, 148)(142, 147)(143, 146)(144, 145)(169, 185)(170, 184)(171, 183)(172, 182)(173, 181)(174, 186)(175, 191)(176, 190)(177, 189)(178, 188)(179, 187)(180, 192)
m: (2, 4)(5, 51, 6, 52)(7, 49, 8, 50)(9, 89, 11, 91)(10, 92, 12, 90)(13, 16, 15, 14)(17, 61, 20, 64)(18, 62, 19, 63)(21, 56)(22, 55)(23, 54)(24, 53)(26, 28)(29, 75, 30, 76)(31, 73, 32, 74)(33, 65, 35, 67)(34, 68, 36, 66)(37, 40, 39, 38)(41, 85, 44, 88)(42, 86, 43, 87)(45, 80)(46, 79)(47, 78)(48, 77)(57, 84, 59, 82)(58, 81, 60, 83)(69, 95)(70, 94)(71, 93)(72, 96)(97, 116)(98, 115)(99, 120)(100, 119)(101, 118)(102, 117)(103, 110)(104, 109)(105, 114)(106, 113)(107, 112)(108, 111)(121, 176, 127, 170)(122, 175, 128, 169)(123, 180, 129, 174)(124, 179, 130, 173)(125, 178, 131, 172)(126, 177, 132, 171)(133, 156, 139, 150)(134, 151, 140, 145)(135, 152, 141, 146)(136, 153, 142, 147)(137, 154, 143, 148)(138, 155, 144, 149)(157, 183)(158, 182)(159, 181)(160, 186)(161, 185)(162, 184)(163, 189)(164, 188)(165, 187)(166, 192)(167, 191)(168, 190)
n1: (1, 5, 12, 16, 19, 23, 25, 29, 36, 40, 43, 47)(2, 8, 9, 13, 18, 24, 26, 32, 33, 37, 42, 48)(3, 7, 10, 14, 17, 21, 27, 31, 34, 38, 41, 45)(4, 6, 11, 15, 20, 22, 28, 30, 35, 39, 44, 46)(49, 56, 57, 61, 65, 72, 73, 80, 81, 85, 89, 96)(50, 55, 58, 62, 66, 71, 74, 79, 82, 86, 90, 95)(51, 54, 59, 63, 67, 70, 75, 78, 83, 87, 91, 94)(52, 53, 60, 64, 68, 69, 76, 77, 84, 88, 92, 93)(97, 127, 139, 151, 157, 120, 100, 130, 142, 154, 160, 117)(98, 128, 140, 152, 158, 119, 101, 131, 143, 155, 161, 116)(99, 129, 141, 153, 159, 118, 102, 132, 144, 156, 162, 115)(103, 121, 133, 145, 163, 114, 106, 124, 136, 148, 166, 111)(104, 122, 134, 146, 164, 113, 107, 125, 137, 149, 167, 110)(105, 123, 135, 147, 165, 112, 108, 126, 138, 150, 168, 109)(169, 181, 170, 182, 171, 183, 172, 184, 173, 185, 174, 186)(175, 187, 176, 188, 177, 189, 178, 190, 179, 191, 180, 192)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 148 ]
192
-1 115 116 97 98
-2 110 97 98 109
-3 110 103 104 109
-4 103 104 115 116
-5 99 127 128 98
-6 99 121 122 98
-7 121 122 104 105
-8 104 105 127 128
-9 122 123 139 140
-10 122 133 123 134
-11 133 134 128 129
-12 128 139 129 140
-13 134 135 151 152
-14 134 145 135 146
-15 145 146 140 141
-16 140 151 141 152
-17 146 147 163 164
-18 146 157 147 158
-19 157 158 152 153
-20 152 163 153 164
-21 165 113 114 164
-22 113 114 158 159
-23 158 159 119 120
-24 165 119 120 164
-25 100 101 118 119
-26 100 101 112 113
-27 112 113 106 107
-28 106 107 118 119
-29 101 102 130 131
-30 101 102 124 125
-31 124 125 107 108
-32 107 108 130 131
-33 143 125 126 142
-34 125 136 126 137
-35 132 136 137 131
-36 132 143 131 142
-37 154 155 137 138
-38 137 148 138 149
-39 143 144 148 149
-40 143 154 144 155
-41 166 167 149 150
-42 149 160 150 161
-43 155 156 160 161
-44 155 166 156 167
-45 110 111 167 168
-46 110 111 161 162
-47 116 117 161 162
-48 167 168 116 117
-49 176 114 109 175
-50 114 169 170 109
-51 169 115 170 120
-52 176 115 120 175
-53 99 187 100 188
-54 99 100 181 182
-55 181 105 182 106
-56 187 188 105 106
-57 176 177 123 124
-58 123 124 170 171
-59 170 171 129 130
-60 176 177 129 130
-61 188 189 135 136
-62 135 136 182 183
-63 182 183 141 142
-64 188 189 141 142
-65 177 178 147 148
-66 147 148 171 172
-67 154 171 172 153
-68 154 177 178 153
-69 189 190 159 160
-70 159 160 183 184
-71 165 166 183 184
-72 165 166 189 190
-73 111 112 178 179
-74 111 112 172 173
-75 117 172 118 173
-76 178 179 117 118
-77 102 190 191 97
-78 102 184 97 185
-79 103 184 108 185
-80 190 103 191 108
-81 121 179 180 126
-82 121 126 173 174
-83 132 127 173 174
-84 132 179 180 127
-85 133 191 192 138
-86 133 138 185 186
-87 144 139 185 186
-88 144 191 192 139
-89 145 180 150 175
-90 145 169 150 174
-91 156 169 151 174
-92 156 180 151 175
-93 187 157 192 162
-94 157 181 162 186
-95 168 181 163 186
-96 187 168 192 163
-97 77 1 78 2
-98 1 2 5 6
-99 5 6 53 54
-100 25 26 53 54
-101 25 26 29 30
-102 77 78 29 30
-103 79 3 80 4
-104 3 4 7 8
-105 55 56 7 8
-106 55 56 27 28
-107 27 28 31 32
-108 79 80 31 32
-109 2 3 49 50
-110 45 2 46 3
-111 45 46 73 74
-112 26 27 73 74
-113 22 26 27 21
-114 22 49 50 21
-115 1 4 51 52
-116 1 47 4 48
-117 47 48 75 76
-118 25 28 75 76
-119 23 24 25 28
-120 23 24 51 52
-121 81 82 6 7
-122 6 7 9 10
-123 57 58 9 10
-124 57 58 30 31
-125 33 34 30 31
-126 33 34 81 82
-127 5 83 84 8
-128 11 12 5 8
-129 11 12 59 60
-130 59 60 29 32
-131 35 36 29 32
-132 35 36 83 84
-133 11 85 86 10
-134 11 13 14 10
-135 13 14 61 62
-136 34 35 61 62
-137 34 35 37 38
-138 37 38 85 86
-139 88 12 9 87
-140 12 15 16 9
-141 15 16 63 64
-142 33 36 63 64
-143 33 36 39 40
-144 88 39 40 87
-145 89 90 14 15
-146 14 15 17 18
-147 66 17 18 65
-148 66 38 39 65
-149 38 39 41 42
-150 89 90 41 42
-151 13 91 92 16
-152 13 16 19 20
-153 67 68 19 20
-154 67 68 37 40
-155 44 37 40 43
-156 44 91 92 43
-157 93 94 18 19
-158 22 23 18 19
-159 22 23 69 70
-160 69 70 42 43
-161 46 47 42 43
-162 46 47 93 94
-163 17 95 96 20
-164 24 17 20 21
-165 24 71 72 21
-166 44 71 72 41
-167 44 45 48 41
-168 45 48 95 96
-169 90 91 50 51
-170 58 59 50 51
-171 66 67 58 59
-172 66 67 74 75
-173 82 83 74 75
-174 90 91 82 83
-175 89 92 49 52
-176 57 49 60 52
-177 57 68 60 65
-178 68 73 65 76
-179 81 73 84 76
-180 89 81 92 84
-181 55 94 95 54
-182 55 62 63 54
-183 70 71 62 63
-184 78 79 70 71
-185 78 79 86 87
-186 94 95 86 87
-187 56 93 96 53
-188 56 61 53 64
-189 69 61 72 64
-190 77 69 80 72
-191 77 88 80 85
-192 88 93 85 96
0

**************