C4graphGraph forms for C4 [ 192, 150 ] = SDD(C_48(1,7))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 150 ] = SDD(C_48(1,7)).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {70, 127}, {68, 126}, {69, 127}, {64, 124}, {65, 125}, {67, 127}, {67, 126}, {65, 126}, {66, 125}, {56, 120}, {57, 121}, {59, 123}, {54, 119}, {59, 122}, {61, 124}, {52, 118}, {53, 119}, {63, 125}, {57, 122}, {58, 121}, {63, 124}, {48, 116}, {49, 117}, {51, 119}, {51, 118}, {62, 123}, {60, 122}, {61, 123}, {49, 118}, {50, 117}, {56, 127}, {54, 126}, {38, 111}, {52, 125}, {36, 110}, {37, 111}, {48, 123}, {32, 108}, {35, 111}, {33, 109}, {35, 110}, {53, 120}, {50, 124}, {55, 121}, {33, 110}, {34, 109}, {55, 120}, {38, 118}, {36, 117}, {42, 120}, {32, 115}, {46, 122}, {37, 112}, {44, 121}, {34, 116}, {39, 113}, {39, 112}, {40, 112}, {43, 115}, {41, 113}, {43, 114}, {45, 116}, {47, 117}, {41, 114}, {42, 113}, {47, 116}, {46, 115}, {44, 114}, {45, 115}, {40, 119}, {1, 97}, {3, 97}, {1, 98}, {15, 108}, {9, 106}, {2, 97}, {6, 98}, {4, 97}, {7, 98}, {5, 99}, {5, 98}, {12, 107}, {12, 100}, {14, 102}, {10, 99}, {13, 100}, {2, 104}, {26, 112}, {15, 101}, {9, 99}, {8, 99}, {14, 101}, {8, 100}, {30, 114}, {28, 113}, {11, 101}, {6, 105}, {11, 100}, {24, 104}, {27, 107}, {25, 105}, {22, 103}, {29, 108}, {27, 106}, {21, 103}, {31, 109}, {20, 103}, {31, 108}, {26, 105}, {25, 106}, {18, 102}, {16, 101}, {30, 107}, {19, 102}, {17, 103}, {29, 107}, {28, 106}, {17, 102}, {24, 111}, {21, 110}, {20, 104}, {23, 105}, {18, 109}, {23, 104}, {13, 141}, {38, 166}, {27, 155}, {25, 153}, {24, 152}, {22, 151}, {36, 165}, {29, 156}, {27, 154}, {21, 151}, {42, 168}, {31, 157}, {20, 151}, {32, 163}, {31, 156}, {26, 153}, {25, 154}, {18, 150}, {46, 170}, {16, 149}, {44, 169}, {37, 160}, {30, 155}, {19, 150}, {10, 140}, {39, 161}, {34, 164}, {29, 155}, {28, 154}, {22, 144}, {17, 151}, {17, 150}, {39, 160}, {24, 159}, {40, 160}, {43, 163}, {41, 161}, {3, 138}, {45, 164}, {43, 162}, {47, 165}, {58, 176}, {21, 158}, {42, 161}, {41, 162}, {47, 164}, {7, 139}, {20, 152}, {62, 178}, {46, 163}, {60, 177}, {23, 153}, {45, 163}, {44, 162}, {18, 157}, {40, 167}, {23, 152}, {1, 145}, {56, 168}, {57, 169}, {59, 171}, {54, 167}, {59, 170}, {61, 172}, {3, 145}, {52, 166}, {53, 167}, {63, 173}, {1, 146}, {15, 156}, {9, 154}, {2, 145}, {57, 170}, {58, 169}, {63, 172}, {4, 144}, {6, 146}, {48, 164}, {49, 165}, {51, 167}, {4, 145}, {7, 146}, {51, 166}, {62, 171}, {5, 147}, {60, 170}, {61, 171}, {5, 146}, {12, 155}, {49, 166}, {50, 165}, {56, 175}, {12, 148}, {14, 150}, {54, 174}, {10, 147}, {13, 148}, {52, 173}, {2, 152}, {90, 192}, {15, 149}, {9, 147}, {8, 147}, {14, 149}, {48, 171}, {8, 148}, {19, 143}, {53, 168}, {11, 149}, {16, 142}, {50, 172}, {55, 169}, {6, 153}, {11, 148}, {55, 168}, {96, 192}, {19, 191}, {16, 190}, {13, 189}, {10, 188}, {3, 186}, {38, 159}, {26, 160}, {37, 159}, {36, 158}, {58, 128}, {7, 187}, {35, 159}, {33, 157}, {32, 156}, {30, 162}, {62, 130}, {28, 161}, {35, 158}, {60, 129}, {33, 158}, {34, 157}, {70, 134}, {68, 133}, {74, 136}, {64, 131}, {4, 192}, {78, 138}, {69, 128}, {76, 137}, {66, 132}, {71, 129}, {71, 128}, {72, 128}, {73, 129}, {75, 131}, {75, 130}, {77, 132}, {79, 133}, {90, 144}, {73, 130}, {74, 129}, {79, 132}, {78, 131}, {76, 130}, {77, 131}, {72, 135}, {88, 136}, {95, 143}, {94, 142}, {93, 141}, {92, 140}, {91, 139}, {89, 137}, {86, 135}, {95, 142}, {93, 140}, {91, 138}, {84, 134}, {85, 135}, {89, 138}, {94, 141}, {90, 137}, {80, 132}, {83, 135}, {81, 133}, {83, 134}, {22, 192}, {81, 134}, {92, 139}, {88, 143}, {82, 133}, {86, 142}, {84, 141}, {80, 139}, {85, 136}, {82, 140}, {87, 137}, {87, 136}, {96, 191}, {88, 184}, {95, 191}, {94, 190}, {93, 189}, {92, 188}, {91, 187}, {89, 185}, {86, 183}, {95, 190}, {93, 188}, {91, 186}, {84, 182}, {85, 183}, {89, 186}, {94, 189}, {90, 185}, {80, 180}, {83, 183}, {81, 181}, {83, 182}, {81, 182}, {92, 187}, {88, 191}, {82, 181}, {86, 190}, {70, 175}, {84, 189}, {68, 174}, {69, 175}, {80, 187}, {64, 172}, {65, 173}, {67, 175}, {67, 174}, {85, 184}, {82, 188}, {87, 185}, {65, 174}, {96, 143}, {87, 184}, {66, 173}, {70, 182}, {96, 144}, {68, 181}, {74, 184}, {64, 179}, {78, 186}, {69, 176}, {76, 185}, {66, 180}, {71, 177}, {71, 176}, {72, 176}, {73, 177}, {75, 179}, {75, 178}, {77, 180}, {79, 181}, {73, 178}, {79, 180}, {74, 177}, {78, 179}, {76, 178}, {77, 179}, {72, 183} }>;

(II) A more general form is to represent the graph as the orbit of {70, 127} under the group generated by the following permutations:

a: (139, 187)
b: (118, 166)
c: (104, 152)
d: (112, 160)
e: (2, 7)(3, 6)(4, 5)(8, 96)(9, 90)(10, 22)(11, 95)(12, 88)(13, 19)(14, 94)(15, 86)(17, 93)(18, 84)(20, 92)(21, 82)(23, 91)(24, 80)(25, 89)(26, 78)(27, 87)(28, 76)(29, 85)(30, 74)(31, 83)(32, 72)(33, 81)(34, 70)(35, 79)(36, 68)(37, 77)(38, 66)(39, 75)(40, 64)(41, 73)(42, 62)(43, 71)(44, 60)(45, 69)(46, 58)(47, 67)(48, 56)(49, 65)(50, 54)(51, 63)(53, 61)(55, 59)(97, 98)(99, 144)(100, 143)(101, 142)(102, 141)(103, 140)(104, 139)(105, 138)(106, 137)(107, 136)(108, 135)(109, 134)(110, 133)(111, 132)(112, 131)(113, 130)(114, 129)(115, 128)(116, 127)(117, 126)(118, 125)(119, 124)(120, 123)(121, 122)(145, 146)(147, 192)(148, 191)(149, 190)(150, 189)(151, 188)(152, 187)(153, 186)(154, 185)(155, 184)(156, 183)(157, 182)(158, 181)(159, 180)(160, 179)(161, 178)(162, 177)(163, 176)(164, 175)(165, 174)(166, 173)(167, 172)(168, 171)(169, 170)
f: (98, 146)
g: (124, 172)
h: (100, 148)
m: (142, 190)
n1: (143, 191)
a1: (132, 180)
b1: (109, 157)
c1: (135, 183)
d1: (141, 189)
e1: (136, 184)
f1: (133, 181)
g1: (129, 177)
h1: (106, 154)
m1: (111, 159)
n2: (1, 2, 20, 21, 33, 34, 45, 46, 57, 58, 69, 70, 81, 82, 92, 7)(3, 23, 22, 35, 18, 47, 32, 59, 44, 71, 56, 83, 68, 93, 80, 5)(4, 24, 17, 36, 31, 48, 43, 60, 55, 72, 67, 84, 79, 10, 91, 6)(8, 78, 25, 90, 37, 19, 49, 15, 61, 30, 73, 42, 85, 54, 94, 66)(9, 89, 26, 96, 38, 14, 50, 29, 62, 41, 74, 53, 86, 65, 13, 77)(11, 64, 27, 76, 39, 88, 51, 16, 63, 12, 75, 28, 87, 40, 95, 52)(97, 104, 103, 110, 109, 116, 115, 122, 121, 128, 127, 134, 133, 140, 139, 98)(99, 138, 105, 144, 111, 102, 117, 108, 123, 114, 129, 120, 135, 126, 141, 132)(100, 131, 106, 137, 112, 143, 118, 101, 124, 107, 130, 113, 136, 119, 142, 125)(145, 152, 151, 158, 157, 164, 163, 170, 169, 176, 175, 182, 181, 188, 187, 146)(147, 186, 153, 192, 159, 150, 165, 156, 171, 162, 177, 168, 183, 174, 189, 180)(148, 179, 154, 185, 160, 191, 166, 149, 172, 155, 178, 161, 184, 167, 190, 173)
a2: (102, 150)
b2: (128, 176)
c2: (101, 149)
d2: (127, 175)
e2: (126, 174)
f2: (122, 170)
g2: (134, 182)
h2: (99, 147)
m2: (114, 162)
n3: (121, 169)
a3: (140, 188)
b3: (137, 185)
c3: (113, 161)
d3: (131, 179)
e3: (108, 156)
f3: (103, 151)
g3: (125, 173)
h3: (107, 155)
m3: (130, 178)
n4: (119, 167)
a4: (123, 171)
b4: (97, 145)
c4: (144, 192)
d4: (117, 165)
e4: (1, 3)(2, 4)(5, 78)(6, 89)(7, 91)(8, 64)(9, 75)(10, 77)(11, 50)(12, 61)(13, 63)(14, 36)(15, 47)(16, 49)(17, 21)(18, 33)(19, 35)(20, 22)(23, 90)(24, 96)(25, 76)(26, 87)(27, 62)(28, 73)(29, 48)(30, 59)(31, 34)(32, 45)(37, 88)(38, 95)(39, 74)(40, 85)(41, 60)(42, 71)(43, 46)(44, 57)(51, 86)(52, 94)(53, 72)(54, 83)(55, 58)(56, 69)(65, 84)(66, 93)(67, 70)(68, 81)(79, 82)(80, 92)(98, 138)(99, 131)(100, 124)(101, 117)(102, 110)(104, 144)(105, 137)(106, 130)(107, 123)(108, 116)(111, 143)(112, 136)(113, 129)(114, 122)(118, 142)(119, 135)(120, 128)(125, 141)(126, 134)(132, 140)(146, 186)(147, 179)(148, 172)(149, 165)(150, 158)(152, 192)(153, 185)(154, 178)(155, 171)(156, 164)(159, 191)(160, 184)(161, 177)(162, 170)(166, 190)(167, 183)(168, 176)(173, 189)(174, 182)(180, 188)
f4: (120, 168)
g4: (138, 186)
h4: (116, 164)
m4: (110, 158)
n5: (105, 153)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 150 ]
192
-1 145 146 97 98
-2 145 104 97 152
-3 145 138 97 186
-4 144 145 192 97
-5 99 146 147 98
-6 146 105 98 153
-7 187 146 139 98
-8 99 100 147 148
-9 99 154 147 106
-10 99 188 147 140
-11 100 101 148 149
-12 100 155 148 107
-13 100 189 148 141
-14 101 102 149 150
-15 101 156 149 108
-16 101 190 149 142
-17 102 103 150 151
-18 102 157 150 109
-19 143 102 191 150
-20 103 104 151 152
-21 110 103 158 151
-22 144 103 192 151
-23 104 105 152 153
-24 111 104 159 152
-25 154 105 106 153
-26 112 105 160 153
-27 154 155 106 107
-28 154 113 106 161
-29 155 156 107 108
-30 155 114 107 162
-31 156 157 108 109
-32 156 115 108 163
-33 110 157 158 109
-34 157 116 109 164
-35 110 111 158 159
-36 110 165 158 117
-37 111 112 159 160
-38 111 166 159 118
-39 112 113 160 161
-40 112 167 160 119
-41 113 114 161 162
-42 113 168 161 120
-43 114 115 162 163
-44 121 114 169 162
-45 115 116 163 164
-46 122 115 170 163
-47 165 116 117 164
-48 123 116 171 164
-49 165 166 117 118
-50 165 124 117 172
-51 166 167 118 119
-52 166 125 118 173
-53 167 168 119 120
-54 167 126 119 174
-55 121 168 169 120
-56 168 127 120 175
-57 121 122 169 170
-58 121 176 169 128
-59 122 123 170 171
-60 122 177 170 129
-61 123 124 171 172
-62 123 178 171 130
-63 124 125 172 173
-64 124 179 172 131
-65 125 126 173 174
-66 132 125 180 173
-67 126 127 174 175
-68 133 126 181 174
-69 176 127 128 175
-70 134 127 182 175
-71 176 177 128 129
-72 176 135 128 183
-73 177 178 129 130
-74 177 136 129 184
-75 178 179 130 131
-76 178 137 130 185
-77 132 179 180 131
-78 179 138 131 186
-79 132 133 180 181
-80 132 187 180 139
-81 133 134 181 182
-82 133 188 181 140
-83 134 135 182 183
-84 134 189 182 141
-85 135 136 183 184
-86 135 190 183 142
-87 136 137 184 185
-88 143 136 191 184
-89 137 138 185 186
-90 144 137 192 185
-91 187 138 139 186
-92 187 188 139 140
-93 188 189 140 141
-94 189 190 141 142
-95 143 190 191 142
-96 143 144 191 192
-97 1 2 3 4
-98 1 5 6 7
-99 5 8 9 10
-100 11 12 13 8
-101 11 14 15 16
-102 14 17 18 19
-103 22 17 20 21
-104 23 2 24 20
-105 23 25 26 6
-106 25 27 28 9
-107 12 27 29 30
-108 15 29 31 32
-109 33 34 18 31
-110 33 35 36 21
-111 24 35 37 38
-112 26 37 39 40
-113 28 39 41 42
-114 44 30 41 43
-115 45 46 32 43
-116 34 45 47 48
-117 36 47 49 50
-118 38 49 51 52
-119 40 51 53 54
-120 55 56 42 53
-121 44 55 57 58
-122 46 57 59 60
-123 48 59 61 62
-124 50 61 63 64
-125 66 52 63 65
-126 67 68 54 65
-127 56 67 69 70
-128 58 69 71 72
-129 60 71 73 74
-130 62 73 75 76
-131 77 78 64 75
-132 66 77 79 80
-133 68 79 81 82
-134 70 81 83 84
-135 72 83 85 86
-136 88 74 85 87
-137 89 90 76 87
-138 78 89 3 91
-139 80 91 92 7
-140 92 82 93 10
-141 13 93 94 84
-142 16 94 95 86
-143 88 95 19 96
-144 22 90 4 96
-145 1 2 3 4
-146 1 5 6 7
-147 5 8 9 10
-148 11 12 13 8
-149 11 14 15 16
-150 14 17 18 19
-151 22 17 20 21
-152 23 2 24 20
-153 23 25 26 6
-154 25 27 28 9
-155 12 27 29 30
-156 15 29 31 32
-157 33 34 18 31
-158 33 35 36 21
-159 24 35 37 38
-160 26 37 39 40
-161 28 39 41 42
-162 44 30 41 43
-163 45 46 32 43
-164 34 45 47 48
-165 36 47 49 50
-166 38 49 51 52
-167 40 51 53 54
-168 55 56 42 53
-169 44 55 57 58
-170 46 57 59 60
-171 48 59 61 62
-172 50 61 63 64
-173 66 52 63 65
-174 67 68 54 65
-175 56 67 69 70
-176 58 69 71 72
-177 60 71 73 74
-178 62 73 75 76
-179 77 78 64 75
-180 66 77 79 80
-181 68 79 81 82
-182 70 81 83 84
-183 72 83 85 86
-184 88 74 85 87
-185 89 90 76 87
-186 78 89 3 91
-187 80 91 92 7
-188 92 82 93 10
-189 13 93 94 84
-190 16 94 95 86
-191 88 95 19 96
-192 22 90 4 96
0

**************