C4graphGraph forms for C4 [ 192, 151 ] = SDD({4,4}_<8,4>)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 151 ] = SDD({4,4}_<8,4>).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {75, 127}, {74, 127}, {72, 126}, {72, 127}, {73, 126}, {67, 123}, {68, 124}, {70, 126}, {66, 123}, {68, 125}, {69, 124}, {64, 122}, {71, 125}, {64, 123}, {65, 122}, {70, 125}, {66, 124}, {51, 115}, {52, 116}, {54, 118}, {50, 115}, {52, 117}, {53, 116}, {48, 114}, {55, 117}, {58, 120}, {48, 115}, {49, 114}, {54, 117}, {43, 111}, {60, 120}, {61, 121}, {42, 111}, {40, 110}, {50, 116}, {63, 121}, {40, 111}, {41, 110}, {61, 122}, {62, 121}, {36, 108}, {37, 109}, {34, 107}, {33, 107}, {39, 109}, {32, 107}, {38, 109}, {37, 110}, {32, 108}, {51, 127}, {59, 119}, {58, 119}, {56, 118}, {35, 108}, {49, 126}, {56, 119}, {57, 118}, {43, 123}, {45, 124}, {47, 125}, {41, 122}, {33, 119}, {42, 112}, {35, 120}, {44, 112}, {46, 114}, {44, 113}, {45, 112}, {38, 120}, {47, 113}, {39, 121}, {46, 113}, {1, 97}, {18, 114}, {3, 97}, {1, 98}, {2, 97}, {6, 98}, {4, 97}, {7, 98}, {5, 99}, {21, 115}, {9, 111}, {5, 98}, {6, 110}, {30, 118}, {14, 102}, {12, 100}, {10, 99}, {13, 100}, {9, 99}, {15, 101}, {8, 99}, {14, 101}, {8, 100}, {24, 116}, {2, 108}, {27, 117}, {11, 101}, {3, 109}, {11, 100}, {24, 104}, {26, 106}, {22, 103}, {25, 104}, {21, 103}, {27, 105}, {20, 103}, {26, 105}, {18, 102}, {30, 106}, {16, 101}, {31, 106}, {28, 105}, {19, 102}, {17, 103}, {29, 107}, {17, 102}, {29, 106}, {12, 112}, {20, 104}, {15, 113}, {23, 105}, {23, 104}, {24, 152}, {43, 171}, {26, 154}, {10, 139}, {45, 172}, {25, 152}, {22, 151}, {13, 140}, {21, 151}, {47, 173}, {27, 153}, {20, 151}, {41, 170}, {26, 153}, {18, 150}, {30, 154}, {16, 149}, {31, 154}, {28, 153}, {19, 150}, {53, 176}, {17, 151}, {33, 167}, {29, 155}, {55, 177}, {17, 150}, {29, 154}, {59, 179}, {60, 180}, {25, 144}, {42, 160}, {62, 180}, {63, 181}, {35, 168}, {57, 178}, {20, 152}, {46, 162}, {44, 160}, {4, 137}, {45, 160}, {44, 161}, {7, 138}, {23, 153}, {47, 161}, {39, 169}, {38, 168}, {23, 152}, {46, 161}, {1, 145}, {51, 163}, {52, 164}, {54, 166}, {50, 163}, {52, 165}, {53, 164}, {3, 145}, {48, 162}, {55, 165}, {58, 168}, {1, 146}, {49, 162}, {48, 163}, {2, 145}, {54, 165}, {6, 146}, {84, 192}, {60, 168}, {61, 169}, {4, 145}, {34, 183}, {7, 146}, {5, 147}, {86, 192}, {9, 159}, {50, 164}, {63, 169}, {5, 146}, {61, 170}, {62, 169}, {6, 158}, {14, 150}, {12, 148}, {10, 147}, {31, 134}, {28, 133}, {22, 143}, {13, 148}, {9, 147}, {15, 149}, {8, 147}, {14, 149}, {8, 148}, {36, 184}, {51, 175}, {59, 167}, {16, 141}, {19, 142}, {58, 167}, {2, 156}, {11, 149}, {3, 157}, {56, 166}, {11, 148}, {49, 174}, {56, 167}, {57, 166}, {96, 192}, {34, 135}, {22, 191}, {31, 182}, {28, 181}, {12, 160}, {36, 136}, {16, 189}, {19, 190}, {15, 161}, {18, 162}, {10, 187}, {13, 188}, {43, 159}, {42, 159}, {53, 128}, {21, 163}, {40, 158}, {55, 129}, {40, 159}, {41, 158}, {30, 166}, {37, 157}, {36, 156}, {59, 131}, {60, 132}, {34, 155}, {33, 155}, {39, 157}, {62, 132}, {63, 133}, {32, 155}, {38, 157}, {37, 158}, {57, 130}, {24, 164}, {32, 156}, {4, 185}, {7, 186}, {27, 165}, {35, 156}, {75, 139}, {77, 140}, {79, 141}, {73, 138}, {67, 135}, {84, 144}, {86, 144}, {65, 134}, {74, 128}, {76, 128}, {78, 130}, {69, 136}, {76, 129}, {77, 128}, {71, 137}, {79, 129}, {78, 129}, {83, 131}, {95, 143}, {94, 142}, {93, 141}, {92, 140}, {91, 139}, {90, 138}, {89, 137}, {88, 136}, {87, 135}, {85, 133}, {84, 132}, {82, 131}, {95, 142}, {93, 140}, {91, 138}, {89, 136}, {87, 134}, {80, 130}, {80, 131}, {94, 141}, {90, 137}, {86, 133}, {85, 134}, {81, 130}, {82, 132}, {92, 139}, {25, 192}, {83, 143}, {81, 142}, {96, 191}, {88, 135}, {83, 179}, {95, 191}, {94, 190}, {93, 189}, {92, 188}, {91, 187}, {90, 186}, {89, 185}, {88, 184}, {87, 183}, {85, 181}, {84, 180}, {82, 179}, {95, 190}, {93, 188}, {91, 186}, {89, 184}, {87, 182}, {80, 178}, {80, 179}, {94, 189}, {90, 185}, {86, 181}, {85, 182}, {81, 178}, {75, 175}, {74, 175}, {72, 174}, {82, 180}, {72, 175}, {92, 187}, {73, 174}, {67, 171}, {68, 172}, {70, 174}, {66, 171}, {68, 173}, {69, 172}, {64, 170}, {71, 173}, {64, 171}, {65, 170}, {70, 173}, {83, 191}, {66, 172}, {81, 190}, {96, 143}, {88, 183}, {75, 187}, {96, 144}, {77, 188}, {79, 189}, {73, 186}, {67, 183}, {65, 182}, {74, 176}, {76, 176}, {78, 178}, {69, 184}, {76, 177}, {77, 176}, {71, 185}, {79, 177}, {78, 177} }>;

(II) A more general form is to represent the graph as the orbit of {75, 127} under the group generated by the following permutations:

a: (139, 187)
b: (118, 166)
c: (104, 152)
d: (112, 160)
e: (124, 172)
f: (98, 146)
g: (1, 2, 32, 29, 26, 23, 20, 17, 14, 11, 8, 5)(3, 35, 33, 30, 27, 24, 21, 18, 15, 12, 9, 6)(4, 36, 34, 31, 28, 25, 22, 19, 16, 13, 10, 7)(37, 38, 58, 56, 54, 52, 50, 48, 46, 44, 42, 40)(39, 60, 59, 57, 55, 53, 51, 49, 47, 45, 43, 41)(61, 62, 82, 80, 78, 76, 74, 72, 70, 68, 66, 64)(63, 84, 83, 81, 79, 77, 75, 73, 71, 69, 67, 65)(85, 86, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87)(97, 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98)(109, 120, 119, 118, 117, 116, 115, 114, 113, 112, 111, 110)(121, 132, 131, 130, 129, 128, 127, 126, 125, 124, 123, 122)(133, 144, 143, 142, 141, 140, 139, 138, 137, 136, 135, 134)(145, 156, 155, 154, 153, 152, 151, 150, 149, 148, 147, 146)(157, 168, 167, 166, 165, 164, 163, 162, 161, 160, 159, 158)(169, 180, 179, 178, 177, 176, 175, 174, 173, 172, 171, 170)(181, 192, 191, 190, 189, 188, 187, 186, 185, 184, 183, 182)
h: (100, 148)
m: (142, 190)
n1: (143, 191)
a1: (132, 180)
b1: (109, 157)
c1: (135, 183)
d1: (141, 189)
e1: (136, 184)
f1: (133, 181)
g1: (129, 177)
h1: (106, 154)
m1: (111, 159)
n2: (102, 150)
a2: (128, 176)
b2: (101, 149)
c2: (127, 175)
d2: (126, 174)
e2: (122, 170)
f2: (2, 5)(3, 7)(4, 6)(8, 32)(9, 36)(10, 35)(11, 29)(12, 34)(13, 33)(14, 26)(15, 31)(16, 30)(17, 23)(18, 28)(19, 27)(21, 25)(22, 24)(37, 90)(38, 91)(39, 73)(40, 89)(41, 71)(42, 88)(43, 69)(44, 87)(45, 67)(46, 85)(47, 65)(48, 86)(49, 63)(50, 96)(51, 84)(52, 95)(53, 83)(54, 94)(55, 81)(56, 93)(57, 79)(58, 92)(59, 77)(60, 75)(61, 70)(62, 72)(64, 68)(74, 82)(76, 80)(97, 98)(99, 108)(100, 107)(101, 106)(102, 105)(103, 104)(109, 138)(110, 137)(111, 136)(112, 135)(113, 134)(114, 133)(115, 144)(116, 143)(117, 142)(118, 141)(119, 140)(120, 139)(121, 126)(122, 125)(123, 124)(127, 132)(128, 131)(129, 130)(145, 146)(147, 156)(148, 155)(149, 154)(150, 153)(151, 152)(157, 186)(158, 185)(159, 184)(160, 183)(161, 182)(162, 181)(163, 192)(164, 191)(165, 190)(166, 189)(167, 188)(168, 187)(169, 174)(170, 173)(171, 172)(175, 180)(176, 179)(177, 178)
g2: (115, 163)
h2: (134, 182)
m2: (99, 147)
n3: (114, 162)
a3: (121, 169)
b3: (140, 188)
c3: (137, 185)
d3: (113, 161)
e3: (131, 179)
f3: (108, 156)
g3: (103, 151)
h3: (125, 173)
m3: (107, 155)
n4: (130, 178)
a4: (119, 167)
b4: (123, 171)
c4: (97, 145)
d4: (1, 3)(2, 4)(5, 39)(6, 37)(7, 38)(8, 63)(9, 61)(10, 62)(11, 28)(12, 85)(13, 86)(14, 27)(15, 26)(16, 23)(17, 55)(18, 54)(19, 52)(20, 79)(21, 78)(22, 76)(24, 94)(25, 93)(29, 47)(30, 46)(31, 44)(32, 71)(33, 70)(34, 68)(35, 90)(36, 89)(40, 41)(42, 65)(43, 64)(45, 87)(48, 57)(49, 56)(50, 81)(51, 80)(53, 95)(58, 73)(59, 72)(60, 91)(66, 67)(69, 88)(74, 83)(75, 82)(77, 96)(84, 92)(98, 109)(99, 121)(100, 133)(101, 105)(102, 117)(103, 129)(104, 141)(106, 113)(107, 125)(108, 137)(111, 122)(112, 134)(114, 118)(115, 130)(116, 142)(119, 126)(120, 138)(124, 135)(127, 131)(128, 143)(132, 139)(140, 144)(146, 157)(147, 169)(148, 181)(149, 153)(150, 165)(151, 177)(152, 189)(154, 161)(155, 173)(156, 185)(159, 170)(160, 182)(162, 166)(163, 178)(164, 190)(167, 174)(168, 186)(172, 183)(175, 179)(176, 191)(180, 187)(188, 192)
e4: (144, 192)
f4: (120, 168)
g4: (138, 186)
h4: (116, 164)
m4: (110, 158)
n5: (105, 153)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 151 ]
192
-1 145 146 97 98
-2 145 156 97 108
-3 145 157 97 109
-4 145 137 97 185
-5 99 146 147 98
-6 110 146 158 98
-7 146 138 98 186
-8 99 100 147 148
-9 99 111 147 159
-10 99 187 147 139
-11 100 101 148 149
-12 100 112 148 160
-13 100 188 148 140
-14 101 102 149 150
-15 101 113 149 161
-16 101 189 149 141
-17 102 103 150 151
-18 102 114 150 162
-19 102 190 150 142
-20 103 104 151 152
-21 103 115 151 163
-22 143 103 191 151
-23 104 105 152 153
-24 104 116 152 164
-25 144 104 192 152
-26 154 105 106 153
-27 165 105 117 153
-28 133 181 105 153
-29 154 155 106 107
-30 154 166 106 118
-31 154 134 182 106
-32 155 156 107 108
-33 155 167 107 119
-34 155 135 183 107
-35 156 168 108 120
-36 156 136 184 108
-37 110 157 158 109
-38 157 168 109 120
-39 121 157 169 109
-40 110 111 158 159
-41 110 122 158 170
-42 111 112 159 160
-43 111 123 159 171
-44 112 113 160 161
-45 112 124 160 172
-46 113 114 161 162
-47 113 125 161 173
-48 114 115 162 163
-49 114 126 162 174
-50 115 116 163 164
-51 115 127 163 175
-52 165 116 117 164
-53 176 116 128 164
-54 165 166 117 118
-55 165 177 117 129
-56 166 167 118 119
-57 166 178 118 130
-58 167 168 119 120
-59 167 179 119 131
-60 132 168 180 120
-61 121 122 169 170
-62 121 132 169 180
-63 121 133 169 181
-64 122 123 170 171
-65 122 134 170 182
-66 123 124 171 172
-67 123 135 171 183
-68 124 125 172 173
-69 124 136 172 184
-70 125 126 173 174
-71 125 137 173 185
-72 126 127 174 175
-73 126 138 174 186
-74 176 127 128 175
-75 187 127 139 175
-76 176 177 128 129
-77 176 188 128 140
-78 177 178 129 130
-79 177 189 129 141
-80 178 179 130 131
-81 178 190 130 142
-82 132 179 180 131
-83 143 179 191 131
-84 132 144 180 192
-85 133 134 181 182
-86 133 144 181 192
-87 134 135 182 183
-88 135 136 183 184
-89 136 137 184 185
-90 137 138 185 186
-91 187 138 139 186
-92 187 188 139 140
-93 188 189 140 141
-94 189 190 141 142
-95 143 190 191 142
-96 143 144 191 192
-97 1 2 3 4
-98 1 5 6 7
-99 5 8 9 10
-100 11 12 13 8
-101 11 14 15 16
-102 14 17 18 19
-103 22 17 20 21
-104 23 24 25 20
-105 23 26 27 28
-106 26 29 30 31
-107 33 34 29 32
-108 2 35 36 32
-109 3 37 38 39
-110 37 6 40 41
-111 40 9 42 43
-112 44 12 45 42
-113 44 46 47 15
-114 46 48 49 18
-115 48 50 51 21
-116 24 50 52 53
-117 55 27 52 54
-118 56 57 30 54
-119 33 56 58 59
-120 35 58 38 60
-121 39 61 62 63
-122 61 41 64 65
-123 66 67 64 43
-124 66 45 68 69
-125 68 47 70 71
-126 70 49 72 73
-127 72 51 74 75
-128 77 74 53 76
-129 55 78 79 76
-130 78 57 80 81
-131 80 59 82 83
-132 60 82 62 84
-133 28 63 85 86
-134 85 31 65 87
-135 88 34 67 87
-136 88 89 36 69
-137 89 90 4 71
-138 90 91 7 73
-139 91 92 75 10
-140 77 13 92 93
-141 79 16 93 94
-142 81 94 95 19
-143 22 83 95 96
-144 25 84 96 86
-145 1 2 3 4
-146 1 5 6 7
-147 5 8 9 10
-148 11 12 13 8
-149 11 14 15 16
-150 14 17 18 19
-151 22 17 20 21
-152 23 24 25 20
-153 23 26 27 28
-154 26 29 30 31
-155 33 34 29 32
-156 2 35 36 32
-157 3 37 38 39
-158 37 6 40 41
-159 40 9 42 43
-160 44 12 45 42
-161 44 46 47 15
-162 46 48 49 18
-163 48 50 51 21
-164 24 50 52 53
-165 55 27 52 54
-166 56 57 30 54
-167 33 56 58 59
-168 35 58 38 60
-169 39 61 62 63
-170 61 41 64 65
-171 66 67 64 43
-172 66 45 68 69
-173 68 47 70 71
-174 70 49 72 73
-175 72 51 74 75
-176 77 74 53 76
-177 55 78 79 76
-178 78 57 80 81
-179 80 59 82 83
-180 60 82 62 84
-181 28 63 85 86
-182 85 31 65 87
-183 88 34 67 87
-184 88 89 36 69
-185 89 90 4 71
-186 90 91 7 73
-187 91 92 75 10
-188 77 13 92 93
-189 79 16 93 94
-190 81 94 95 19
-191 22 83 95 96
-192 25 84 96 86
0

**************