C4graphGraph forms for C4 [ 192, 152 ] = SDD(R_24(20,7))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 152 ] = SDD(R_24(20,7)).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {86, 127}, {84, 126}, {85, 127}, {80, 124}, {81, 125}, {83, 126}, {82, 125}, {72, 120}, {73, 121}, {70, 119}, {75, 122}, {69, 119}, {68, 119}, {74, 121}, {79, 124}, {66, 118}, {64, 117}, {67, 118}, {78, 123}, {65, 119}, {76, 122}, {77, 123}, {65, 118}, {66, 122}, {71, 124}, {68, 120}, {69, 123}, {71, 120}, {48, 112}, {50, 114}, {46, 111}, {49, 112}, {45, 111}, {51, 113}, {44, 111}, {50, 113}, {42, 110}, {54, 114}, {40, 109}, {43, 110}, {52, 113}, {55, 114}, {41, 111}, {53, 115}, {63, 121}, {41, 110}, {53, 114}, {36, 108}, {38, 110}, {60, 116}, {62, 118}, {34, 107}, {37, 108}, {58, 115}, {61, 116}, {33, 107}, {39, 109}, {57, 115}, {63, 117}, {32, 107}, {38, 109}, {56, 115}, {62, 117}, {32, 108}, {56, 116}, {35, 109}, {59, 117}, {35, 108}, {59, 116}, {44, 112}, {47, 113}, {47, 112}, {1, 97}, {3, 97}, {1, 98}, {2, 97}, {6, 98}, {4, 97}, {7, 98}, {5, 99}, {5, 98}, {12, 100}, {14, 102}, {10, 99}, {13, 100}, {9, 99}, {21, 127}, {15, 101}, {8, 99}, {14, 101}, {8, 100}, {18, 126}, {11, 101}, {11, 100}, {12, 124}, {26, 106}, {24, 104}, {22, 103}, {25, 104}, {9, 123}, {27, 105}, {21, 103}, {15, 125}, {20, 103}, {26, 105}, {18, 102}, {30, 106}, {10, 127}, {31, 106}, {28, 105}, {19, 102}, {16, 101}, {17, 103}, {29, 107}, {17, 102}, {29, 106}, {4, 125}, {7, 126}, {2, 120}, {3, 121}, {6, 122}, {20, 104}, {23, 105}, {23, 104}, {24, 152}, {26, 154}, {60, 188}, {22, 151}, {25, 152}, {21, 151}, {27, 153}, {57, 187}, {20, 151}, {26, 153}, {18, 150}, {30, 154}, {16, 149}, {31, 154}, {28, 153}, {19, 150}, {58, 191}, {17, 151}, {29, 155}, {17, 150}, {29, 154}, {48, 184}, {72, 192}, {52, 189}, {55, 190}, {51, 185}, {20, 152}, {44, 160}, {54, 186}, {13, 128}, {49, 188}, {23, 153}, {47, 161}, {23, 152}, {47, 160}, {1, 145}, {48, 160}, {36, 180}, {50, 162}, {16, 129}, {49, 160}, {43, 186}, {40, 185}, {19, 130}, {3, 145}, {39, 181}, {33, 179}, {51, 161}, {1, 146}, {2, 145}, {50, 161}, {6, 146}, {54, 162}, {4, 145}, {46, 187}, {34, 183}, {22, 131}, {7, 146}, {52, 161}, {55, 162}, {5, 147}, {86, 192}, {53, 163}, {63, 169}, {5, 146}, {53, 162}, {12, 148}, {24, 128}, {14, 150}, {60, 164}, {62, 166}, {10, 147}, {31, 134}, {28, 133}, {13, 148}, {58, 163}, {61, 164}, {9, 147}, {45, 183}, {27, 129}, {15, 149}, {57, 163}, {63, 165}, {8, 147}, {14, 149}, {56, 163}, {62, 165}, {8, 148}, {42, 182}, {30, 130}, {56, 164}, {25, 132}, {37, 184}, {11, 149}, {59, 165}, {11, 148}, {59, 164}, {12, 172}, {96, 192}, {36, 132}, {16, 177}, {43, 138}, {40, 137}, {19, 178}, {9, 171}, {39, 133}, {33, 131}, {15, 173}, {10, 175}, {46, 139}, {34, 135}, {22, 179}, {24, 176}, {4, 173}, {31, 182}, {28, 181}, {7, 174}, {2, 168}, {45, 135}, {27, 177}, {3, 169}, {6, 170}, {42, 134}, {30, 178}, {25, 180}, {37, 136}, {61, 144}, {60, 140}, {46, 159}, {45, 159}, {57, 139}, {44, 159}, {42, 158}, {40, 157}, {43, 158}, {58, 143}, {41, 159}, {41, 158}, {36, 156}, {48, 136}, {38, 158}, {34, 155}, {37, 156}, {52, 141}, {55, 142}, {21, 175}, {39, 157}, {33, 155}, {51, 137}, {32, 155}, {38, 157}, {18, 174}, {32, 156}, {54, 138}, {13, 176}, {49, 140}, {35, 157}, {35, 156}, {74, 138}, {78, 140}, {86, 144}, {76, 139}, {70, 143}, {73, 128}, {75, 129}, {79, 131}, {64, 141}, {67, 142}, {77, 130}, {87, 135}, {95, 143}, {94, 142}, {93, 141}, {92, 140}, {91, 139}, {90, 138}, {89, 137}, {88, 136}, {85, 134}, {81, 132}, {83, 133}, {87, 128}, {95, 136}, {72, 144}, {88, 129}, {96, 185}, {94, 135}, {92, 133}, {90, 131}, {84, 143}, {93, 134}, {89, 130}, {82, 142}, {80, 141}, {91, 132}, {72, 168}, {95, 191}, {94, 190}, {93, 189}, {92, 188}, {91, 187}, {90, 186}, {89, 185}, {88, 184}, {87, 183}, {73, 169}, {70, 167}, {75, 170}, {69, 167}, {68, 167}, {85, 182}, {74, 169}, {79, 172}, {66, 166}, {64, 165}, {81, 180}, {67, 166}, {78, 171}, {65, 167}, {83, 181}, {76, 170}, {77, 171}, {65, 166}, {95, 184}, {87, 176}, {66, 170}, {88, 177}, {96, 137}, {94, 183}, {92, 181}, {90, 179}, {71, 172}, {93, 182}, {89, 178}, {84, 191}, {68, 168}, {82, 190}, {80, 189}, {69, 171}, {71, 168}, {91, 180}, {74, 186}, {96, 144}, {78, 188}, {76, 187}, {70, 191}, {86, 175}, {73, 176}, {75, 177}, {85, 175}, {84, 174}, {79, 179}, {80, 172}, {81, 173}, {61, 192}, {83, 174}, {64, 189}, {67, 190}, {77, 178}, {82, 173} }>;

(II) A more general form is to represent the graph as the orbit of {86, 127} under the group generated by the following permutations:

a: (139, 187)
b: (118, 166)
c: (104, 152)
d: (112, 160)
e: (124, 172)
f: (98, 146)
g: (100, 148)
h: (142, 190)
m: (143, 191)
n1: (132, 180)
a1: (109, 157)
b1: (135, 183)
c1: (141, 189)
d1: (136, 184)
e1: (133, 181)
f1: (129, 177)
g1: (111, 159)
h1: (102, 150)
m1: (128, 176)
n2: (101, 149)
a2: (127, 175)
b2: (126, 174)
c2: (122, 170)
d2: (115, 163)
e2: (134, 182)
f2: (99, 147)
g2: (114, 162)
h2: (121, 169)
m2: (140, 188)
n3: (137, 185)
a3: (113, 161)
b3: (131, 179)
c3: (108, 156)
d3: (103, 151)
e3: (125, 173)
f3: (107, 155)
g3: (130, 178)
h3: (119, 167)
m3: (123, 171)
n4: (97, 145)
a4: (1, 2, 68, 65, 62, 59, 56, 53, 50, 47, 44, 41, 38, 35, 32, 29, 26, 23, 20, 17, 14, 11, 8, 5)(3, 72, 70, 67, 64, 60, 57, 54, 51, 48, 45, 42, 39, 36, 33, 30, 27, 24, 21, 18, 15, 12, 9, 6)(4, 71, 69, 66, 63, 61, 58, 55, 52, 49, 46, 43, 40, 37, 34, 31, 28, 25, 22, 19, 16, 13, 10, 7)(73, 86, 84, 82, 80, 78, 76, 74, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 85, 83, 81, 79, 77, 75)(97, 120, 119, 118, 117, 116, 115, 114, 113, 112, 111, 110, 109, 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98)(121, 144, 143, 142, 141, 140, 139, 138, 137, 136, 135, 134, 133, 132, 131, 130, 129, 128, 127, 126, 125, 124, 123, 122)(145, 168, 167, 166, 165, 164, 163, 162, 161, 160, 159, 158, 157, 156, 155, 154, 153, 152, 151, 150, 149, 148, 147, 146)(169, 192, 191, 190, 189, 188, 187, 186, 185, 184, 183, 182, 181, 180, 179, 178, 177, 176, 175, 174, 173, 172, 171, 170)
b4: (144, 192)
c4: (2, 4)(5, 6)(8, 66)(9, 75)(10, 76)(11, 65)(12, 67)(13, 62)(14, 70)(15, 68)(16, 69)(17, 58)(18, 84)(19, 95)(20, 56)(21, 57)(22, 53)(23, 60)(24, 59)(25, 61)(26, 49)(27, 78)(28, 92)(29, 47)(30, 48)(31, 44)(32, 51)(33, 50)(34, 52)(35, 40)(36, 96)(37, 89)(41, 42)(45, 93)(46, 85)(54, 90)(55, 79)(63, 73)(64, 87)(71, 82)(72, 81)(77, 88)(80, 94)(86, 91)(99, 122)(100, 118)(101, 119)(102, 143)(103, 115)(104, 116)(105, 140)(106, 112)(107, 113)(108, 137)(111, 134)(114, 131)(117, 128)(120, 125)(123, 129)(124, 142)(127, 139)(130, 136)(132, 144)(135, 141)(147, 170)(148, 166)(149, 167)(150, 191)(151, 163)(152, 164)(153, 188)(154, 160)(155, 161)(156, 185)(159, 182)(162, 179)(165, 176)(168, 173)(171, 177)(172, 190)(175, 187)(178, 184)(180, 192)(183, 189)
d4: (117, 165)
e4: (2, 6)(3, 7)(4, 5)(8, 15)(9, 82)(10, 81)(12, 16)(13, 14)(17, 24)(18, 73)(19, 87)(21, 25)(22, 23)(26, 33)(27, 79)(28, 90)(30, 34)(31, 32)(35, 42)(36, 85)(37, 93)(39, 43)(40, 41)(44, 51)(45, 89)(46, 96)(48, 52)(49, 50)(53, 60)(54, 92)(55, 78)(57, 61)(58, 59)(62, 70)(63, 84)(64, 95)(66, 68)(67, 69)(71, 75)(72, 76)(74, 83)(77, 94)(80, 88)(86, 91)(97, 98)(99, 125)(100, 101)(102, 128)(103, 104)(105, 131)(106, 107)(108, 134)(109, 110)(111, 137)(112, 113)(114, 140)(115, 116)(117, 143)(118, 119)(120, 122)(121, 126)(123, 142)(124, 129)(127, 132)(130, 135)(133, 138)(136, 141)(139, 144)(145, 146)(147, 173)(148, 149)(150, 176)(151, 152)(153, 179)(154, 155)(156, 182)(157, 158)(159, 185)(160, 161)(162, 188)(163, 164)(165, 191)(166, 167)(168, 170)(169, 174)(171, 190)(172, 177)(175, 180)(178, 183)(181, 186)(184, 189)(187, 192)
f4: (120, 168)
g4: (138, 186)
h4: (116, 164)
m4: (110, 158)
n5: (105, 153)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 152 ]
192
-1 145 146 97 98
-2 145 168 97 120
-3 121 145 169 97
-4 145 125 173 97
-5 99 146 147 98
-6 122 146 170 98
-7 146 126 174 98
-8 99 100 147 148
-9 99 123 147 171
-10 99 147 127 175
-11 100 101 148 149
-12 100 124 148 172
-13 176 100 148 128
-14 101 102 149 150
-15 101 125 149 173
-16 177 101 149 129
-17 102 103 150 151
-18 102 126 150 174
-19 178 102 150 130
-20 103 104 151 152
-21 103 127 151 175
-22 179 103 151 131
-23 104 105 152 153
-24 176 104 128 152
-25 132 180 104 152
-26 154 105 106 153
-27 177 105 129 153
-28 133 181 105 153
-29 154 155 106 107
-30 154 178 106 130
-31 154 134 182 106
-32 155 156 107 108
-33 155 179 107 131
-34 155 135 183 107
-35 156 157 108 109
-36 132 156 180 108
-37 156 136 184 108
-38 110 157 158 109
-39 133 157 181 109
-40 157 137 185 109
-41 110 111 158 159
-42 110 134 158 182
-43 110 158 138 186
-44 111 112 159 160
-45 111 135 159 183
-46 187 111 159 139
-47 112 113 160 161
-48 112 136 160 184
-49 188 112 160 140
-50 113 114 161 162
-51 113 137 161 185
-52 189 113 161 141
-53 114 115 162 163
-54 114 138 162 186
-55 190 114 162 142
-56 115 116 163 164
-57 187 115 139 163
-58 143 191 115 163
-59 165 116 117 164
-60 188 116 140 164
-61 144 192 116 164
-62 165 166 117 118
-63 121 165 169 117
-64 165 189 117 141
-65 166 167 118 119
-66 122 166 170 118
-67 166 190 118 142
-68 167 168 119 120
-69 123 167 171 119
-70 143 167 191 119
-71 124 168 172 120
-72 144 168 192 120
-73 121 176 169 128
-74 121 169 138 186
-75 122 177 170 129
-76 187 122 170 139
-77 123 178 171 130
-78 188 123 171 140
-79 124 179 172 131
-80 189 124 172 141
-81 132 125 180 173
-82 190 125 173 142
-83 133 126 181 174
-84 143 191 126 174
-85 134 127 182 175
-86 144 192 127 175
-87 176 135 128 183
-88 177 136 129 184
-89 178 137 130 185
-90 179 138 131 186
-91 132 187 180 139
-92 133 188 181 140
-93 134 189 182 141
-94 135 190 183 142
-95 143 136 191 184
-96 144 137 192 185
-97 1 2 3 4
-98 1 5 6 7
-99 5 8 9 10
-100 11 12 13 8
-101 11 14 15 16
-102 14 17 18 19
-103 22 17 20 21
-104 23 24 25 20
-105 23 26 27 28
-106 26 29 30 31
-107 33 34 29 32
-108 35 36 37 32
-109 35 38 39 40
-110 38 41 42 43
-111 44 45 46 41
-112 44 47 48 49
-113 47 50 51 52
-114 55 50 53 54
-115 56 57 58 53
-116 56 59 60 61
-117 59 62 63 64
-118 66 67 62 65
-119 68 69 70 65
-120 2 68 71 72
-121 3 73 63 74
-122 66 6 75 76
-123 77 78 69 9
-124 12 79 80 71
-125 4 15 81 82
-126 83 7 18 84
-127 85 86 10 21
-128 13 24 73 87
-129 88 16 27 75
-130 77 89 19 30
-131 22 33 79 90
-132 25 36 91 81
-133 92 28 39 83
-134 93 85 31 42
-135 34 45 94 87
-136 88 37 48 95
-137 89 40 51 96
-138 90 74 43 54
-139 46 57 91 76
-140 78 92 49 60
-141 80 93 52 64
-142 55 67 82 94
-143 58 70 84 95
-144 61 72 96 86
-145 1 2 3 4
-146 1 5 6 7
-147 5 8 9 10
-148 11 12 13 8
-149 11 14 15 16
-150 14 17 18 19
-151 22 17 20 21
-152 23 24 25 20
-153 23 26 27 28
-154 26 29 30 31
-155 33 34 29 32
-156 35 36 37 32
-157 35 38 39 40
-158 38 41 42 43
-159 44 45 46 41
-160 44 47 48 49
-161 47 50 51 52
-162 55 50 53 54
-163 56 57 58 53
-164 56 59 60 61
-165 59 62 63 64
-166 66 67 62 65
-167 68 69 70 65
-168 2 68 71 72
-169 3 73 63 74
-170 66 6 75 76
-171 77 78 69 9
-172 12 79 80 71
-173 4 15 81 82
-174 83 7 18 84
-175 85 86 10 21
-176 13 24 73 87
-177 88 16 27 75
-178 77 89 19 30
-179 22 33 79 90
-180 25 36 91 81
-181 92 28 39 83
-182 93 85 31 42
-183 34 45 94 87
-184 88 37 48 95
-185 89 40 51 96
-186 90 74 43 54
-187 46 57 91 76
-188 78 92 49 60
-189 80 93 52 64
-190 55 67 82 94
-191 58 70 84 95
-192 61 72 96 86
0

**************