C4graphGraph forms for C4 [ 192, 153 ] = BGCG(R_24(20,7);K2;{8,9})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 153 ] = BGCG(R_24(20,7);K2;{8,9}).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {68, 101}, {93, 124}, {73, 107}, {92, 126}, {88, 122}, {87, 117}, {66, 103}, {77, 104}, {79, 106}, {70, 97}, {83, 116}, {79, 102}, {85, 127}, {86, 124}, {74, 97}, {94, 117}, {81, 122}, {65, 109}, {93, 113}, {89, 119}, {90, 116}, {95, 112}, {93, 109}, {90, 105}, {70, 114}, {71, 114}, {87, 98}, {75, 126}, {64, 118}, {78, 120}, {82, 100}, {65, 118}, {71, 112}, {69, 125}, {84, 108}, {92, 101}, {64, 123}, {70, 125}, {82, 110}, {76, 113}, {90, 103}, {89, 100}, {82, 111}, {42, 106}, {47, 111}, {34, 99}, {42, 104}, {59, 121}, {61, 127}, {45, 110}, {58, 121}, {63, 123}, {39, 97}, {41, 99}, {44, 102}, {61, 119}, {54, 120}, {61, 115}, {34, 109}, {48, 127}, {36, 107}, {60, 115}, {35, 115}, {39, 118}, {44, 125}, {41, 120}, {40, 121}, {34, 112}, {56, 108}, {58, 110}, {51, 102}, {45, 123}, {62, 105}, {33, 121}, {46, 118}, {59, 99}, {42, 115}, {49, 104}, {54, 111}, {49, 107}, {38, 123}, {55, 106}, {63, 98}, {45, 114}, {60, 99}, {8, 107}, {14, 106}, {17, 117}, {16, 117}, {1, 103}, {27, 125}, {23, 113}, {3, 101}, {10, 109}, {22, 113}, {12, 100}, {22, 126}, {30, 119}, {20, 127}, {21, 126}, {16, 124}, {1, 108}, {7, 105}, {28, 114}, {15, 97}, {11, 100}, {10, 122}, {6, 119}, {11, 122}, {20, 102}, {15, 124}, {22, 98}, {13, 120}, {25, 108}, {6, 112}, {31, 105}, {12, 116}, {26, 98}, {23, 111}, {13, 116}, {18, 104}, {31, 101}, {29, 103}, {17, 110}, {59, 187}, {26, 152}, {56, 186}, {29, 153}, {53, 176}, {8, 142}, {54, 176}, {63, 185}, {3, 132}, {44, 171}, {37, 162}, {36, 163}, {9, 142}, {5, 140}, {31, 150}, {10, 131}, {58, 179}, {62, 183}, {73, 192}, {2, 136}, {30, 148}, {57, 179}, {3, 136}, {24, 147}, {34, 174}, {37, 169}, {4, 137}, {28, 145}, {13, 128}, {37, 171}, {41, 167}, {40, 166}, {19, 156}, {50, 189}, {13, 157}, {48, 160}, {50, 162}, {43, 186}, {56, 169}, {1, 147}, {31, 141}, {4, 151}, {35, 176}, {32, 179}, {14, 157}, {1, 149}, {39, 179}, {17, 133}, {3, 151}, {55, 163}, {63, 171}, {4, 145}, {46, 187}, {42, 191}, {54, 163}, {62, 171}, {12, 154}, {43, 189}, {20, 130}, {2, 149}, {21, 130}, {18, 133}, {12, 155}, {48, 167}, {55, 160}, {7, 159}, {57, 161}, {9, 144}, {32, 185}, {11, 146}, {52, 174}, {90, 192}, {26, 129}, {53, 174}, {5, 153}, {22, 139}, {25, 135}, {38, 184}, {55, 169}, {16, 143}, {46, 177}, {41, 182}, {35, 188}, {27, 132}, {21, 138}, {30, 190}, {60, 156}, {62, 158}, {6, 164}, {21, 183}, {14, 172}, {8, 170}, {2, 161}, {44, 143}, {15, 172}, {7, 164}, {61, 158}, {50, 150}, {23, 178}, {46, 139}, {38, 131}, {37, 128}, {49, 148}, {60, 153}, {25, 191}, {48, 150}, {52, 146}, {17, 182}, {45, 138}, {32, 135}, {49, 150}, {5, 173}, {4, 173}, {47, 134}, {32, 137}, {28, 181}, {18, 187}, {6, 175}, {5, 175}, {43, 129}, {24, 178}, {59, 145}, {9, 162}, {38, 141}, {51, 152}, {28, 176}, {29, 177}, {52, 152}, {7, 170}, {33, 140}, {24, 181}, {19, 189}, {40, 134}, {25, 183}, {53, 154}, {51, 131}, {8, 185}, {33, 144}, {23, 165}, {40, 154}, {47, 156}, {51, 135}, {57, 141}, {15, 186}, {43, 158}, {39, 146}, {27, 174}, {50, 135}, {56, 141}, {14, 184}, {16, 166}, {57, 143}, {11, 188}, {30, 169}, {24, 160}, {33, 152}, {18, 168}, {36, 158}, {19, 168}, {47, 148}, {26, 161}, {2, 190}, {35, 159}, {9, 180}, {10, 180}, {29, 163}, {27, 165}, {52, 138}, {53, 139}, {58, 132}, {36, 155}, {73, 136}, {88, 153}, {79, 142}, {66, 134}, {95, 155}, {68, 128}, {69, 129}, {68, 129}, {81, 151}, {91, 157}, {87, 145}, {65, 134}, {74, 130}, {96, 168}, {84, 156}, {75, 131}, {84, 157}, {70, 140}, {69, 137}, {95, 147}, {92, 144}, {64, 144}, {86, 132}, {94, 140}, {19, 192}, {20, 192}, {93, 137}, {72, 159}, {77, 154}, {67, 155}, {86, 142}, {80, 136}, {91, 130}, {79, 149}, {95, 133}, {80, 138}, {81, 139}, {72, 148}, {74, 151}, {88, 133}, {78, 147}, {76, 146}, {81, 143}, {96, 128}, {71, 166}, {86, 183}, {91, 185}, {94, 188}, {76, 175}, {87, 180}, {67, 167}, {78, 170}, {80, 180}, {64, 165}, {91, 190}, {66, 167}, {75, 173}, {74, 162}, {83, 187}, {77, 164}, {80, 186}, {89, 181}, {94, 178}, {75, 166}, {84, 164}, {92, 172}, {73, 184}, {89, 168}, {78, 189}, {83, 160}, {65, 181}, {85, 161}, {96, 149}, {71, 177}, {72, 177}, {85, 172}, {76, 182}, {68, 191}, {67, 191}, {83, 175}, {67, 190}, {88, 165}, {69, 184}, {66, 188}, {72, 182}, {77, 178}, {96, 159}, {85, 170}, {82, 173} }>;

(II) A more general form is to represent the graph as the orbit of {68, 101} under the group generated by the following permutations:

a: (1, 49)(2, 50)(3, 51)(4, 52)(5, 53)(6, 54)(7, 55)(8, 56)(9, 57)(10, 58)(11, 59)(12, 60)(13, 61)(14, 62)(15, 63)(16, 64)(17, 65)(18, 66)(19, 67)(20, 68)(21, 69)(22, 70)(23, 71)(24, 72)(25, 73)(26, 74)(27, 75)(28, 76)(29, 77)(30, 78)(31, 79)(32, 80)(33, 81)(34, 82)(35, 83)(36, 84)(37, 85)(38, 86)(39, 87)(40, 88)(41, 89)(42, 90)(43, 91)(44, 92)(45, 93)(46, 94)(47, 95)(48, 96)(97, 98)(99, 100)(101, 102)(103, 104)(105, 106)(107, 108)(109, 110)(111, 112)(113, 114)(115, 116)(117, 118)(119, 120)(121, 122)(123, 124)(125, 126)(127, 128)(129, 130)(131, 132)(133, 134)(135, 136)(137, 138)(139, 140)(141, 142)(143, 144)(145, 146)(147, 148)(149, 150)(151, 152)(153, 154)(155, 156)(157, 158)(159, 160)(161, 162)(163, 164)(165, 166)(167, 168)(169, 170)(171, 172)(173, 174)(175, 176)(177, 178)(179, 180)(181, 182)(183, 184)(185, 186)(187, 188)(189, 190)(191, 192)
b: (3, 26)(4, 22)(5, 23)(6, 47)(7, 19)(8, 20)(9, 44)(10, 16)(11, 17)(12, 41)(15, 38)(18, 35)(21, 32)(24, 29)(27, 33)(28, 46)(31, 43)(34, 40)(36, 48)(39, 45)(49, 61)(50, 62)(51, 86)(52, 58)(53, 59)(54, 83)(57, 80)(60, 77)(63, 74)(64, 70)(65, 71)(66, 95)(69, 92)(72, 89)(73, 85)(75, 93)(76, 82)(78, 90)(81, 87)(88, 94)(97, 123)(98, 151)(99, 154)(100, 182)(101, 129)(102, 142)(103, 147)(104, 115)(105, 189)(107, 127)(109, 166)(110, 146)(111, 175)(112, 134)(113, 173)(114, 118)(116, 120)(117, 122)(119, 148)(121, 174)(124, 131)(125, 144)(126, 137)(130, 185)(132, 152)(133, 188)(135, 183)(136, 161)(138, 179)(139, 145)(140, 165)(141, 186)(143, 180)(150, 158)(153, 178)(155, 167)(156, 164)(159, 168)(160, 163)(162, 171)(170, 192)(172, 184)(176, 187)(177, 181)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24)(25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48)(49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)(73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96)(97, 166, 182, 104, 189, 102, 138, 139, 111, 160, 108, 161, 132, 145, 153, 119, 105, 185, 144, 109, 188, 155, 128, 184)(98, 165, 181, 103, 190, 101, 137, 140, 112, 159, 107, 162, 131, 146, 154, 120, 106, 186, 143, 110, 187, 156, 127, 183)(99, 115, 158, 171, 123, 118, 134, 167, 191, 129, 125, 114, 177, 148, 150, 135, 152, 174, 176, 163, 169, 141, 179, 121)(100, 116, 157, 172, 124, 117, 133, 168, 192, 130, 126, 113, 178, 147, 149, 136, 151, 173, 175, 164, 170, 142, 180, 122)
d: (2, 24, 25, 29)(3, 28, 32, 5)(6, 31, 35, 8)(9, 34, 38, 11)(12, 37, 41, 14)(15, 40, 44, 17)(18, 43, 47, 20)(21, 46, 26, 23)(27, 45, 39, 33)(30, 48, 42, 36)(49, 61)(50, 60, 73, 89)(51, 88, 80, 65)(52, 64)(53, 63, 76, 92)(54, 91, 83, 68)(55, 67)(56, 66, 79, 95)(57, 94, 86, 71)(58, 70)(59, 69, 82, 74)(62, 72, 85, 77)(75, 81, 87, 93)(78, 84, 90, 96)(97, 121, 125, 110)(98, 113, 126, 139)(99, 184, 100, 162)(101, 176, 185, 175)(102, 133, 186, 134)(103, 149, 147, 108)(104, 158, 148, 127)(105, 159, 170, 164)(106, 155, 169, 167)(107, 119, 150, 115)(109, 131, 122, 180)(111, 130, 187, 129)(112, 141, 188, 142)(114, 179, 140, 132)(116, 128, 120, 157)(117, 124, 166, 143)(118, 152, 165, 138)(123, 146, 144, 174)(135, 153, 136, 181)(137, 173, 151, 145)(154, 171, 182, 172)(156, 192, 168, 189)(160, 191, 163, 190)(161, 178, 183, 177)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 153 ]
192
-1 103 147 149 108
-2 190 136 149 161
-3 132 101 136 151
-4 145 137 151 173
-5 140 173 153 175
-6 112 119 164 175
-7 159 170 105 164
-8 170 107 185 142
-9 144 180 162 142
-10 122 180 109 131
-11 100 122 188 146
-12 154 100 155 116
-13 157 116 128 120
-14 157 106 172 184
-15 124 172 97 186
-16 143 166 124 117
-17 110 133 182 117
-18 187 133 168 104
-19 156 189 168 192
-20 102 192 127 130
-21 126 138 183 130
-22 113 126 139 98
-23 165 111 178 113
-24 178 147 181 160
-25 135 191 183 108
-26 161 129 152 98
-27 132 165 125 174
-28 176 145 114 181
-29 177 103 163 153
-30 190 169 148 119
-31 101 105 150 141
-32 135 179 137 185
-33 121 144 140 152
-34 99 112 174 109
-35 176 188 115 159
-36 155 158 107 163
-37 169 171 128 162
-38 123 184 141 131
-39 146 179 118 97
-40 121 154 166 134
-41 99 167 182 120
-42 191 104 115 106
-43 189 158 129 186
-44 143 102 125 171
-45 110 123 114 138
-46 187 177 139 118
-47 111 134 156 148
-48 167 127 160 150
-49 104 148 150 107
-50 189 135 150 162
-51 102 135 152 131
-52 146 138 152 174
-53 154 176 139 174
-54 176 111 163 120
-55 169 160 106 163
-56 169 108 141 186
-57 143 179 161 141
-58 110 121 132 179
-59 99 121 187 145
-60 99 156 115 153
-61 158 115 127 119
-62 158 105 171 183
-63 123 171 185 98
-64 165 144 123 118
-65 134 181 118 109
-66 188 134 167 103
-67 155 167 190 191
-68 101 191 128 129
-69 125 137 129 184
-70 114 125 140 97
-71 166 177 112 114
-72 177 148 159 182
-73 136 192 107 184
-74 151 162 97 130
-75 166 126 173 131
-76 113 146 182 175
-77 154 178 104 164
-78 189 147 170 120
-79 102 149 106 142
-80 136 180 138 186
-81 143 122 139 151
-82 110 100 111 173
-83 187 116 160 175
-84 156 157 108 164
-85 170 127 161 172
-86 132 124 183 142
-87 145 180 117 98
-88 165 122 133 153
-89 100 168 181 119
-90 103 192 105 116
-91 157 190 130 185
-92 144 101 126 172
-93 113 124 137 109
-94 188 178 117 140
-95 133 155 112 147
-96 168 159 149 128
-97 15 70 39 74
-98 22 26 63 87
-99 34 59 60 41
-100 11 12 89 82
-101 68 3 92 31
-102 44 79 51 20
-103 66 1 90 29
-104 77 49 18 42
-105 90 7 62 31
-106 55 79 14 42
-107 36 49 73 8
-108 1 56 25 84
-109 34 93 10 65
-110 45 58 82 17
-111 23 47 82 54
-112 34 71 6 95
-113 22 23 93 76
-114 45 70 71 28
-115 35 60 61 42
-116 12 13 90 83
-117 16 17 94 87
-118 46 39 64 65
-119 89 6 61 30
-120 78 13 41 54
-121 33 58 59 40
-122 11 88 81 10
-123 45 38 63 64
-124 15 16 93 86
-125 44 69 70 27
-126 22 92 75 21
-127 48 61 85 20
-128 13 68 37 96
-129 68 69 26 43
-130 91 74 20 21
-131 38 51 75 10
-132 3 58 27 86
-133 88 17 18 95
-134 66 47 40 65
-135 25 50 51 32
-136 2 3 80 73
-137 69 4 93 32
-138 45 80 52 21
-139 22 46 81 53
-140 33 70 5 94
-141 56 57 38 31
-142 79 8 9 86
-143 44 57 81 16
-144 33 92 9 64
-145 4 59 28 87
-146 11 39 52 76
-147 1 78 24 95
-148 47 49 72 30
-149 1 2 79 96
-150 48 49 50 31
-151 3 4 81 74
-152 33 26 51 52
-153 88 5 60 29
-154 77 12 40 53
-155 12 67 36 95
-156 47 60 84 19
-157 13 14 91 84
-158 36 61 62 43
-159 35 72 7 96
-160 55 24 48 83
-161 2 57 26 85
-162 37 50 74 9
-163 55 36 29 54
-164 77 6 7 84
-165 88 23 27 64
-166 16 71 40 75
-167 66 67 48 41
-168 89 18 19 96
-169 55 56 37 30
-170 78 7 8 85
-171 44 37 62 63
-172 14 15 92 85
-173 4 5 82 75
-174 34 27 52 53
-175 5 6 83 76
-176 35 28 53 54
-177 46 71 72 29
-178 77 23 24 94
-179 57 58 39 32
-180 80 9 10 87
-181 89 24 28 65
-182 17 72 41 76
-183 25 62 86 21
-184 14 69 38 73
-185 91 8 63 32
-186 56 80 15 43
-187 46 59 83 18
-188 11 66 35 94
-189 78 50 19 43
-190 67 2 91 30
-191 67 68 25 42
-192 90 73 19 20
0

**************