C4graphGraph forms for C4 [ 192, 154 ] = BGCG(PX(6,3);K2;{1,5})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 154 ] = BGCG(PX(6,3);K2;{1,5}).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {68, 100}, {95, 127}, {90, 122}, {75, 107}, {68, 97}, {93, 120}, {65, 103}, {91, 125}, {79, 105}, {80, 118}, {80, 119}, {92, 116}, {66, 107}, {82, 123}, {64, 106}, {76, 102}, {70, 109}, {84, 127}, {93, 113}, {88, 118}, {82, 125}, {67, 114}, {94, 111}, {87, 102}, {73, 123}, {71, 115}, {77, 121}, {80, 100}, {70, 112}, {94, 104}, {89, 110}, {91, 108}, {87, 111}, {67, 121}, {88, 98}, {69, 126}, {83, 104}, {85, 110}, {78, 114}, {95, 99}, {85, 105}, {95, 98}, {77, 115}, {72, 119}, {43, 107}, {49, 113}, {53, 117}, {39, 101}, {32, 99}, {35, 103}, {41, 109}, {59, 126}, {59, 124}, {37, 109}, {40, 97}, {46, 103}, {51, 122}, {50, 120}, {54, 124}, {47, 100}, {56, 116}, {47, 97}, {37, 106}, {58, 117}, {63, 112}, {52, 101}, {42, 121}, {32, 117}, {43, 126}, {53, 99}, {59, 109}, {39, 112}, {32, 120}, {53, 108}, {45, 119}, {61, 103}, {63, 101}, {58, 97}, {34, 126}, {40, 117}, {34, 124}, {46, 112}, {52, 106}, {44, 115}, {45, 114}, {15, 111}, {24, 120}, {5, 100}, {4, 102}, {19, 113}, {23, 116}, {11, 110}, {25, 124}, {13, 104}, {29, 122}, {10, 98}, {23, 127}, {21, 125}, {15, 102}, {29, 116}, {19, 122}, {4, 105}, {5, 107}, {30, 113}, {11, 123}, {1, 114}, {12, 127}, {5, 118}, {2, 119}, {31, 106}, {11, 125}, {20, 98}, {20, 99}, {27, 108}, {22, 110}, {16, 105}, {28, 101}, {22, 111}, {17, 104}, {3, 121}, {8, 115}, {10, 118}, {6, 123}, {18, 108}, {27, 155}, {64, 192}, {55, 182}, {60, 189}, {20, 150}, {26, 153}, {58, 185}, {38, 162}, {35, 166}, {48, 181}, {2, 132}, {45, 171}, {43, 173}, {33, 167}, {12, 138}, {9, 143}, {4, 130}, {2, 138}, {49, 185}, {63, 183}, {72, 192}, {14, 135}, {43, 162}, {31, 150}, {29, 148}, {25, 144}, {20, 157}, {58, 179}, {1, 139}, {56, 178}, {6, 141}, {54, 189}, {21, 153}, {40, 164}, {39, 171}, {27, 151}, {22, 155}, {36, 169}, {31, 146}, {1, 143}, {41, 167}, {11, 132}, {52, 187}, {56, 183}, {3, 147}, {35, 179}, {34, 178}, {30, 142}, {9, 152}, {7, 149}, {23, 133}, {8, 154}, {14, 157}, {36, 183}, {55, 164}, {19, 135}, {16, 133}, {25, 140}, {51, 166}, {7, 145}, {42, 188}, {63, 169}, {22, 129}, {60, 171}, {27, 131}, {54, 174}, {23, 142}, {48, 169}, {36, 189}, {61, 164}, {35, 185}, {57, 162}, {61, 166}, {51, 175}, {5, 152}, {28, 129}, {17, 140}, {14, 147}, {2, 156}, {46, 176}, {45, 179}, {57, 167}, {14, 145}, {12, 172}, {62, 158}, {9, 168}, {49, 144}, {16, 177}, {55, 150}, {56, 153}, {41, 139}, {47, 141}, {42, 136}, {53, 151}, {61, 159}, {24, 187}, {30, 189}, {7, 163}, {36, 128}, {34, 134}, {31, 187}, {18, 182}, {15, 170}, {55, 146}, {3, 165}, {37, 131}, {19, 180}, {30, 185}, {24, 191}, {51, 148}, {9, 161}, {13, 165}, {32, 137}, {50, 155}, {33, 136}, {57, 144}, {28, 182}, {48, 154}, {44, 134}, {62, 148}, {6, 173}, {46, 130}, {62, 146}, {13, 160}, {26, 183}, {13, 163}, {39, 137}, {57, 151}, {16, 191}, {48, 159}, {47, 128}, {29, 178}, {8, 184}, {10, 186}, {33, 144}, {50, 131}, {38, 151}, {7, 181}, {44, 158}, {18, 160}, {12, 190}, {3, 176}, {18, 161}, {24, 172}, {38, 146}, {26, 175}, {41, 156}, {33, 148}, {52, 129}, {60, 137}, {62, 136}, {15, 184}, {40, 159}, {25, 174}, {4, 188}, {38, 158}, {28, 164}, {6, 190}, {54, 142}, {59, 131}, {8, 177}, {44, 149}, {17, 168}, {1, 186}, {50, 137}, {21, 174}, {26, 166}, {60, 128}, {49, 140}, {10, 180}, {17, 175}, {21, 170}, {96, 160}, {71, 134}, {92, 157}, {73, 139}, {89, 155}, {81, 147}, {78, 141}, {70, 130}, {64, 134}, {73, 143}, {71, 128}, {86, 145}, {65, 139}, {96, 170}, {92, 150}, {71, 141}, {67, 136}, {86, 157}, {76, 130}, {86, 152}, {75, 132}, {74, 154}, {68, 149}, {95, 142}, {85, 132}, {75, 152}, {89, 140}, {81, 135}, {96, 182}, {75, 156}, {82, 133}, {92, 133}, {68, 158}, {70, 156}, {79, 149}, {80, 138}, {66, 159}, {90, 135}, {87, 138}, {77, 147}, {79, 145}, {81, 143}, {69, 154}, {94, 129}, {66, 162}, {90, 187}, {72, 171}, {82, 177}, {73, 173}, {37, 192}, {90, 191}, {65, 167}, {83, 180}, {69, 173}, {83, 186}, {93, 180}, {42, 192}, {84, 190}, {85, 191}, {69, 169}, {84, 184}, {74, 165}, {76, 163}, {67, 179}, {78, 190}, {65, 176}, {94, 175}, {93, 172}, {89, 168}, {64, 178}, {74, 184}, {79, 188}, {72, 188}, {78, 186}, {91, 174}, {83, 165}, {66, 181}, {86, 161}, {88, 160}, {76, 181}, {96, 153}, {81, 168}, {74, 176}, {91, 161}, {87, 172}, {88, 163}, {77, 177}, {84, 170} }>;

(II) A more general form is to represent the graph as the orbit of {68, 100} under the group generated by the following permutations:

a: (1, 49)(2, 50)(3, 51)(4, 52)(5, 53)(6, 54)(7, 55)(8, 56)(9, 57)(10, 58)(11, 59)(12, 60)(13, 61)(14, 62)(15, 63)(16, 64)(17, 65)(18, 66)(19, 67)(20, 68)(21, 69)(22, 70)(23, 71)(24, 72)(25, 73)(26, 74)(27, 75)(28, 76)(29, 77)(30, 78)(31, 79)(32, 80)(33, 81)(34, 82)(35, 83)(36, 84)(37, 85)(38, 86)(39, 87)(40, 88)(41, 89)(42, 90)(43, 91)(44, 92)(45, 93)(46, 94)(47, 95)(48, 96)(97, 98)(99, 100)(101, 102)(103, 104)(105, 106)(107, 108)(109, 110)(111, 112)(113, 114)(115, 116)(117, 118)(119, 120)(121, 122)(123, 124)(125, 126)(127, 128)(129, 130)(131, 132)(133, 134)(135, 136)(137, 138)(139, 140)(141, 142)(143, 144)(145, 146)(147, 148)(149, 150)(151, 152)(153, 154)(155, 156)(157, 158)(159, 160)(161, 162)(163, 164)(165, 166)(167, 168)(169, 170)(171, 172)(173, 174)(175, 176)(177, 178)(179, 180)(181, 182)(183, 184)(185, 186)(187, 188)(189, 190)(191, 192)
b: (1, 9)(2, 13)(3, 11)(4, 15)(5, 10)(6, 14)(7, 12)(8, 16)(17, 41)(18, 45)(19, 43)(20, 47)(21, 42)(22, 46)(23, 44)(24, 48)(25, 33)(26, 37)(27, 35)(28, 39)(29, 34)(30, 38)(31, 36)(32, 40)(49, 57)(50, 61)(51, 59)(52, 63)(53, 58)(54, 62)(55, 60)(56, 64)(65, 89)(66, 93)(67, 91)(68, 95)(69, 90)(70, 94)(71, 92)(72, 96)(73, 81)(74, 85)(75, 83)(76, 87)(77, 82)(78, 86)(79, 84)(80, 88)(97, 99)(98, 100)(103, 155)(104, 156)(105, 184)(106, 183)(107, 180)(108, 179)(109, 175)(110, 176)(111, 130)(112, 129)(113, 162)(114, 161)(115, 133)(116, 134)(119, 160)(120, 159)(121, 125)(122, 126)(123, 147)(124, 148)(127, 149)(128, 150)(131, 166)(132, 165)(135, 173)(136, 174)(137, 164)(138, 163)(139, 168)(140, 167)(141, 157)(142, 158)(145, 190)(146, 189)(151, 185)(152, 186)(153, 192)(154, 191)(169, 187)(170, 188)(171, 182)(172, 181)
c: (1, 2)(3, 4)(5, 6)(7, 8)(9, 11)(10, 12)(13, 15)(14, 16)(17, 22)(18, 21)(19, 24)(20, 23)(25, 27)(26, 28)(29, 31)(30, 32)(33, 37)(34, 38)(35, 39)(36, 40)(49, 50)(51, 52)(53, 54)(55, 56)(57, 59)(58, 60)(61, 63)(62, 64)(65, 70)(66, 69)(67, 72)(68, 71)(73, 75)(74, 76)(77, 79)(78, 80)(81, 85)(82, 86)(83, 87)(84, 88)(97, 128)(98, 127)(99, 142)(100, 141)(101, 166)(102, 165)(103, 112)(104, 111)(105, 147)(106, 148)(107, 173)(108, 174)(109, 167)(110, 168)(113, 120)(114, 119)(115, 149)(116, 150)(117, 189)(118, 190)(121, 188)(122, 187)(123, 152)(124, 151)(125, 161)(126, 162)(129, 175)(130, 176)(131, 144)(132, 143)(133, 157)(134, 158)(135, 191)(136, 192)(137, 185)(138, 186)(139, 156)(140, 155)(145, 177)(146, 178)(153, 182)(154, 181)(159, 169)(160, 170)(163, 184)(164, 183)(171, 179)(172, 180)
d: (2, 5)(4, 7)(9, 41)(10, 45)(11, 43)(12, 47)(13, 42)(14, 46)(15, 44)(16, 48)(17, 33)(18, 37)(19, 35)(20, 39)(21, 34)(22, 38)(23, 36)(24, 40)(26, 29)(28, 31)(50, 53)(52, 55)(57, 89)(58, 93)(59, 91)(60, 95)(61, 90)(62, 94)(63, 92)(64, 96)(65, 81)(66, 85)(67, 83)(68, 87)(69, 82)(70, 86)(71, 84)(72, 88)(74, 77)(76, 79)(97, 172)(98, 171)(99, 137)(100, 138)(101, 150)(102, 149)(103, 135)(104, 136)(105, 181)(106, 182)(107, 132)(108, 131)(109, 161)(110, 162)(111, 158)(112, 157)(113, 185)(114, 186)(115, 184)(116, 183)(117, 120)(118, 119)(121, 165)(122, 166)(123, 173)(124, 174)(125, 126)(127, 128)(129, 146)(130, 145)(133, 169)(134, 170)(139, 143)(140, 144)(141, 190)(142, 189)(147, 176)(148, 175)(151, 155)(152, 156)(153, 178)(154, 177)(159, 191)(160, 192)(163, 188)(164, 187)(167, 168)(179, 180)
e: (1, 3)(2, 4)(5, 7)(6, 8)(9, 13)(10, 14)(11, 15)(12, 16)(25, 26)(27, 28)(29, 30)(31, 32)(33, 35)(34, 36)(37, 39)(38, 40)(41, 46)(42, 45)(43, 48)(44, 47)(49, 51)(50, 52)(53, 55)(54, 56)(57, 61)(58, 62)(59, 63)(60, 64)(73, 74)(75, 76)(77, 78)(79, 80)(81, 83)(82, 84)(85, 87)(86, 88)(89, 94)(90, 93)(91, 96)(92, 95)(97, 158)(98, 157)(99, 150)(100, 149)(101, 131)(102, 132)(103, 167)(104, 168)(105, 138)(106, 137)(107, 181)(108, 182)(109, 112)(110, 111)(113, 122)(114, 121)(115, 141)(116, 142)(117, 146)(118, 145)(119, 188)(120, 187)(123, 184)(124, 183)(125, 170)(126, 169)(127, 133)(128, 134)(129, 155)(130, 156)(135, 180)(136, 179)(139, 176)(140, 175)(143, 165)(144, 166)(147, 186)(148, 185)(151, 164)(152, 163)(153, 174)(154, 173)(159, 162)(160, 161)(171, 192)(172, 191)(177, 190)(178, 189)
f: (9, 10)(11, 12)(13, 14)(15, 16)(17, 19)(18, 20)(21, 23)(22, 24)(25, 30)(26, 29)(27, 32)(28, 31)(33, 35)(34, 36)(37, 39)(38, 40)(41, 45)(42, 46)(43, 47)(44, 48)(57, 58)(59, 60)(61, 62)(63, 64)(65, 67)(66, 68)(69, 71)(70, 72)(73, 78)(74, 77)(75, 80)(76, 79)(81, 83)(82, 84)(85, 87)(86, 88)(89, 93)(90, 94)(91, 95)(92, 96)(97, 162)(98, 161)(99, 108)(100, 107)(101, 106)(102, 105)(103, 136)(104, 135)(109, 171)(110, 172)(111, 191)(112, 192)(113, 140)(114, 139)(115, 154)(116, 153)(117, 151)(118, 152)(119, 156)(120, 155)(121, 176)(122, 175)(123, 190)(124, 189)(125, 127)(126, 128)(129, 187)(130, 188)(131, 137)(132, 138)(133, 170)(134, 169)(141, 173)(142, 174)(143, 186)(144, 185)(145, 163)(146, 164)(147, 165)(148, 166)(149, 181)(150, 182)(157, 160)(158, 159)(167, 179)(168, 180)(177, 184)(178, 183)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 154 ]
192
-1 143 114 139 186
-2 132 156 138 119
-3 121 165 176 147
-4 188 102 105 130
-5 100 107 118 152
-6 123 190 173 141
-7 145 181 149 163
-8 154 177 115 184
-9 143 168 161 152
-10 180 118 98 186
-11 110 132 123 125
-12 190 127 138 172
-13 165 104 160 163
-14 145 135 157 147
-15 111 102 170 184
-16 133 177 191 105
-17 168 104 140 175
-18 160 182 161 108
-19 122 113 135 180
-20 99 157 150 98
-21 125 170 174 153
-22 110 111 155 129
-23 133 116 127 142
-24 187 191 172 120
-25 144 124 140 174
-26 166 183 153 175
-27 155 151 108 131
-28 101 182 129 164
-29 122 178 148 116
-30 189 113 185 142
-31 187 146 106 150
-32 99 137 117 120
-33 144 167 136 148
-34 134 178 124 126
-35 166 179 103 185
-36 189 169 128 183
-37 192 106 109 131
-38 146 158 151 162
-39 101 112 137 171
-40 159 117 97 164
-41 156 167 139 109
-42 121 188 136 192
-43 126 107 162 173
-44 134 158 115 149
-45 179 114 171 119
-46 176 112 103 130
-47 100 128 97 141
-48 154 169 159 181
-49 144 113 140 185
-50 155 137 120 131
-51 122 166 148 175
-52 187 101 106 129
-53 99 117 151 108
-54 189 124 174 142
-55 146 182 150 164
-56 178 116 183 153
-57 144 167 151 162
-58 179 117 97 185
-59 124 126 109 131
-60 189 137 171 128
-61 166 103 159 164
-62 146 136 158 148
-63 101 112 169 183
-64 134 178 192 106
-65 176 167 103 139
-66 159 181 107 162
-67 121 179 114 136
-68 100 158 149 97
-69 154 169 126 173
-70 112 156 130 109
-71 134 115 128 141
-72 188 192 171 119
-73 143 123 139 173
-74 154 165 176 184
-75 132 156 107 152
-76 102 181 130 163
-77 121 177 147 115
-78 190 114 141 186
-79 188 145 105 149
-80 100 138 118 119
-81 143 135 168 147
-82 133 177 123 125
-83 165 180 104 186
-84 190 170 127 184
-85 110 132 191 105
-86 145 157 161 152
-87 111 102 138 172
-88 160 118 163 98
-89 110 155 168 140
-90 187 122 135 191
-91 125 161 108 174
-92 133 157 116 150
-93 113 180 172 120
-94 111 104 129 175
-95 99 127 98 142
-96 170 160 182 153
-97 68 47 58 40
-98 88 95 20 10
-99 95 20 53 32
-100 68 47 80 5
-101 28 39 52 63
-102 4 15 76 87
-103 35 46 61 65
-104 13 17 83 94
-105 79 4 16 85
-106 37 52 31 64
-107 66 5 75 43
-108 91 27 18 53
-109 37 59 70 41
-110 11 22 89 85
-111 22 15 94 87
-112 46 70 39 63
-113 49 93 19 30
-114 1 78 45 67
-115 44 77 71 8
-116 23 56 92 29
-117 58 40 53 32
-118 88 80 5 10
-119 45 2 80 72
-120 24 93 50 32
-121 77 67 3 42
-122 90 29 51 19
-123 11 82 6 73
-124 34 25 59 54
-125 11 91 82 21
-126 34 69 59 43
-127 12 23 84 95
-128 36 47 60 71
-129 22 28 94 52
-130 46 4 70 76
-131 37 59 27 50
-132 11 2 85 75
-133 23 92 16 82
-134 44 34 71 64
-135 90 14 81 19
-136 33 67 62 42
-137 60 39 50 32
-138 12 2 80 87
-139 1 73 41 65
-140 89 25 49 17
-141 78 47 71 6
-142 23 95 30 54
-143 1 81 73 9
-144 33 57 25 49
-145 79 14 7 86
-146 55 38 62 31
-147 77 3 14 81
-148 33 29 51 62
-149 44 68 79 7
-150 55 92 20 31
-151 57 27 38 53
-152 5 9 75 86
-153 56 26 96 21
-154 69 48 8 74
-155 22 89 27 50
-156 2 70 41 75
-157 14 92 20 86
-158 44 68 38 62
-159 66 48 61 40
-160 88 13 18 96
-161 91 18 9 86
-162 66 57 38 43
-163 88 13 7 76
-164 55 28 61 40
-165 13 3 83 74
-166 35 26 61 51
-167 33 57 41 65
-168 89 81 17 9
-169 36 69 48 63
-170 15 84 96 21
-171 45 60 39 72
-172 12 24 93 87
-173 69 6 73 43
-174 25 91 21 54
-175 26 17 94 51
-176 46 3 74 65
-177 77 16 82 8
-178 34 56 29 64
-179 45 67 35 58
-180 93 83 19 10
-181 66 48 7 76
-182 55 28 18 96
-183 56 36 26 63
-184 15 84 8 74
-185 35 58 49 30
-186 1 78 83 10
-187 24 90 52 31
-188 79 4 72 42
-189 36 60 30 54
-190 12 78 6 84
-191 24 90 16 85
-192 37 72 42 64
0

**************