C4graphGraph forms for C4 [ 192, 159 ] = BGCG(KE_24(1,13,4,21,5);K1;{2,3})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 159 ] = BGCG(KE_24(1,13,4,21,5);K1;{2,3}).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {96, 123}, {89, 120}, {83, 118}, {67, 100}, {70, 97}, {85, 114}, {86, 113}, {71, 111}, {93, 117}, {83, 123}, {86, 127}, {77, 103}, {91, 113}, {78, 100}, {87, 125}, {67, 104}, {76, 103}, {66, 110}, {79, 99}, {73, 100}, {78, 99}, {81, 127}, {82, 125}, {81, 97}, {72, 121}, {72, 123}, {68, 113}, {78, 120}, {83, 101}, {82, 101}, {72, 112}, {74, 114}, {78, 118}, {64, 124}, {66, 126}, {64, 125}, {74, 117}, {94, 97}, {37, 101}, {50, 114}, {48, 112}, {55, 119}, {33, 99}, {37, 102}, {39, 100}, {36, 97}, {50, 116}, {53, 115}, {43, 108}, {61, 122}, {35, 106}, {35, 105}, {36, 110}, {60, 118}, {63, 117}, {51, 127}, {54, 120}, {47, 127}, {50, 98}, {55, 102}, {61, 108}, {53, 103}, {59, 105}, {42, 121}, {40, 124}, {44, 120}, {42, 126}, {55, 99}, {32, 118}, {35, 117}, {44, 116}, {36, 125}, {40, 113}, {40, 114}, {54, 109}, {38, 123}, {48, 109}, {54, 107}, {59, 101}, {37, 122}, {53, 106}, {13, 109}, {7, 102}, {24, 121}, {13, 108}, {18, 112}, {19, 112}, {2, 102}, {8, 108}, {14, 104}, {31, 119}, {19, 122}, {1, 107}, {6, 109}, {20, 122}, {29, 115}, {1, 110}, {5, 106}, {25, 104}, {12, 126}, {29, 111}, {24, 106}, {13, 126}, {24, 107}, {30, 107}, {2, 116}, {20, 98}, {10, 124}, {11, 124}, {21, 98}, {11, 115}, {31, 103}, {26, 98}, {23, 111}, {17, 105}, {14, 119}, {13, 119}, {18, 105}, {19, 104}, {18, 110}, {9, 116}, {18, 111}, {7, 121}, {12, 115}, {21, 149}, {9, 136}, {10, 136}, {46, 172}, {35, 161}, {29, 159}, {12, 142}, {58, 184}, {22, 149}, {48, 179}, {4, 128}, {28, 153}, {56, 190}, {45, 170}, {49, 182}, {48, 183}, {52, 179}, {33, 169}, {49, 185}, {3, 138}, {9, 128}, {41, 163}, {58, 176}, {41, 162}, {5, 137}, {44, 160}, {43, 167}, {36, 168}, {34, 174}, {41, 164}, {57, 180}, {58, 183}, {12, 130}, {49, 191}, {23, 153}, {22, 153}, {62, 177}, {27, 139}, {30, 142}, {10, 155}, {32, 177}, {17, 130}, {27, 136}, {15, 155}, {45, 185}, {16, 132}, {57, 173}, {60, 168}, {61, 169}, {17, 132}, {33, 180}, {25, 140}, {25, 143}, {2, 154}, {34, 186}, {55, 175}, {57, 161}, {28, 133}, {2, 152}, {47, 181}, {38, 188}, {34, 184}, {8, 146}, {1, 154}, {9, 146}, {3, 152}, {22, 138}, {26, 134}, {19, 142}, {54, 171}, {31, 129}, {50, 172}, {37, 187}, {56, 166}, {22, 137}, {58, 165}, {59, 164}, {56, 152}, {61, 157}, {17, 176}, {40, 137}, {6, 164}, {20, 182}, {16, 178}, {30, 189}, {16, 180}, {41, 141}, {26, 190}, {21, 177}, {63, 155}, {52, 145}, {25, 191}, {21, 178}, {39, 128}, {20, 188}, {62, 150}, {3, 170}, {31, 182}, {27, 178}, {46, 132}, {63, 149}, {33, 138}, {28, 176}, {51, 159}, {43, 135}, {62, 146}, {46, 131}, {47, 130}, {52, 153}, {4, 170}, {14, 160}, {6, 168}, {7, 168}, {15, 160}, {11, 164}, {5, 181}, {44, 156}, {29, 173}, {15, 190}, {47, 158}, {43, 154}, {26, 171}, {39, 149}, {60, 142}, {63, 141}, {6, 181}, {27, 175}, {38, 146}, {34, 150}, {23, 162}, {38, 147}, {8, 190}, {45, 155}, {1, 182}, {32, 151}, {8, 191}, {7, 191}, {32, 152}, {23, 174}, {51, 138}, {45, 148}, {57, 128}, {10, 176}, {49, 139}, {42, 144}, {39, 157}, {28, 166}, {24, 162}, {53, 143}, {59, 129}, {60, 134}, {15, 180}, {51, 136}, {42, 145}, {30, 165}, {56, 131}, {62, 133}, {4, 184}, {5, 184}, {16, 174}, {3, 188}, {14, 177}, {71, 135}, {70, 132}, {92, 158}, {73, 139}, {65, 130}, {95, 156}, {93, 158}, {85, 150}, {4, 192}, {80, 150}, {90, 156}, {87, 145}, {84, 147}, {85, 157}, {88, 144}, {84, 157}, {96, 169}, {77, 135}, {89, 147}, {11, 192}, {96, 171}, {71, 140}, {73, 133}, {90, 151}, {93, 144}, {90, 148}, {70, 137}, {91, 148}, {66, 147}, {84, 134}, {94, 140}, {80, 131}, {95, 140}, {86, 133}, {72, 156}, {75, 159}, {66, 151}, {74, 159}, {82, 135}, {70, 144}, {67, 148}, {88, 143}, {89, 129}, {91, 131}, {67, 154}, {95, 134}, {77, 151}, {87, 141}, {69, 158}, {86, 141}, {83, 143}, {76, 145}, {94, 129}, {65, 162}, {68, 160}, {95, 187}, {73, 172}, {82, 183}, {88, 189}, {65, 167}, {92, 186}, {69, 163}, {77, 171}, {75, 163}, {76, 165}, {79, 166}, {93, 183}, {96, 139}, {74, 166}, {84, 185}, {94, 179}, {46, 192}, {64, 174}, {69, 170}, {81, 161}, {92, 172}, {80, 161}, {92, 173}, {71, 181}, {91, 169}, {80, 163}, {52, 192}, {81, 165}, {79, 186}, {90, 175}, {75, 189}, {79, 185}, {69, 178}, {76, 187}, {68, 188}, {75, 179}, {65, 187}, {85, 175}, {87, 173}, {64, 189}, {68, 186}, {89, 167}, {88, 167} }>;

(II) A more general form is to represent the graph as the orbit of {96, 123} under the group generated by the following permutations:

a: (2, 30, 49, 18)(3, 64, 73, 35)(4, 34, 92, 57)(5, 68, 87, 39)(6, 14, 42, 61)(7, 19)(8, 48, 55, 12)(9, 58, 79, 29)(10, 28, 74, 51)(11, 62, 93, 33)(15, 52, 85, 47)(16, 46, 80, 69)(17, 56, 75, 27)(20, 36, 67, 24)(21, 70, 91, 41)(22, 40, 86, 63)(23, 50, 81, 45)(25, 72, 37, 60)(26, 94, 90, 65)(31, 66, 43, 54)(32, 88, 96, 59)(38, 82, 78, 53)(44, 76, 84, 71)(77, 89)(97, 148, 162, 98)(99, 115, 146, 183)(100, 106, 188, 125)(101, 118, 143, 123)(102, 142, 191, 112)(103, 147, 135, 120)(104, 121, 122, 168)(105, 152, 189, 139)(107, 182, 110, 154)(108, 109, 119, 126)(111, 116, 165, 185)(113, 141, 149, 137)(114, 127, 155, 153)(117, 138, 124, 133)(128, 184, 186, 173)(129, 151, 167, 171)(130, 190, 179, 175)(131, 163, 178, 132)(134, 140, 156, 187)(136, 176, 166, 159)(144, 169, 164, 177)(145, 157, 181, 160)(150, 158, 180, 192)(161, 170, 174, 172)
b: (2, 30)(3, 81)(4, 80)(5, 91)(6, 61)(7, 19)(8, 48)(9, 75)(10, 74)(11, 85)(12, 55)(14, 42)(15, 93)(16, 92)(17, 79)(18, 49)(20, 36)(21, 87)(22, 86)(23, 73)(24, 67)(25, 72)(26, 82)(27, 29)(31, 66)(32, 76)(33, 47)(34, 46)(35, 45)(37, 60)(38, 94)(39, 41)(43, 54)(44, 88)(50, 64)(52, 62)(53, 90)(56, 58)(57, 69)(59, 84)(65, 78)(68, 70)(71, 96)(83, 95)(97, 188)(98, 125)(99, 130)(100, 162)(101, 134)(102, 142)(103, 151)(104, 121)(105, 185)(106, 148)(107, 154)(108, 109)(110, 182)(111, 139)(112, 191)(113, 137)(114, 124)(115, 175)(116, 189)(117, 155)(118, 187)(119, 126)(120, 167)(122, 168)(123, 140)(127, 138)(128, 163)(129, 147)(131, 184)(132, 186)(133, 153)(135, 171)(136, 159)(141, 149)(143, 156)(144, 160)(145, 177)(146, 179)(150, 192)(152, 165)(157, 164)(158, 180)(161, 170)(166, 176)(169, 181)(172, 174)(173, 178)(183, 190)
c: (1, 2)(3, 24)(4, 23)(5, 22)(6, 21)(7, 20)(8, 19)(9, 18)(10, 17)(11, 16)(12, 15)(13, 14)(25, 61)(26, 60)(27, 59)(28, 58)(29, 57)(30, 56)(31, 55)(32, 54)(33, 53)(34, 52)(35, 51)(36, 50)(37, 49)(38, 72)(39, 71)(40, 70)(41, 69)(42, 68)(43, 67)(44, 66)(45, 65)(46, 64)(47, 63)(48, 62)(73, 82)(74, 81)(75, 80)(76, 79)(77, 78)(83, 96)(84, 95)(85, 94)(86, 93)(87, 92)(88, 91)(89, 90)(97, 114)(98, 168)(99, 103)(100, 135)(101, 139)(102, 182)(104, 108)(105, 136)(106, 138)(107, 152)(109, 177)(110, 116)(111, 128)(112, 146)(113, 144)(115, 180)(117, 127)(118, 171)(120, 151)(121, 188)(122, 191)(124, 132)(125, 172)(126, 160)(129, 175)(130, 155)(131, 189)(133, 183)(140, 157)(141, 158)(142, 190)(143, 169)(145, 186)(147, 156)(148, 167)(149, 181)(150, 179)(153, 184)(159, 161)(162, 170)(164, 178)(165, 166)(174, 192)(185, 187)
d: (2, 24)(3, 35)(4, 80)(5, 56)(6, 8)(9, 41)(10, 86)(11, 62)(12, 14)(15, 47)(16, 92)(17, 68)(18, 20)(21, 29)(22, 74)(23, 50)(25, 60)(26, 71)(27, 87)(28, 40)(30, 67)(31, 66)(32, 53)(33, 93)(34, 46)(36, 49)(37, 72)(38, 59)(39, 75)(42, 55)(43, 54)(44, 65)(45, 81)(48, 61)(51, 63)(52, 85)(57, 69)(58, 91)(64, 73)(70, 79)(76, 90)(78, 88)(82, 96)(84, 94)(97, 185)(98, 111)(99, 144)(100, 189)(101, 123)(102, 121)(103, 151)(104, 142)(105, 188)(106, 152)(107, 154)(108, 109)(110, 182)(112, 122)(113, 176)(114, 153)(115, 177)(116, 162)(117, 138)(118, 143)(119, 126)(120, 167)(124, 133)(125, 139)(127, 155)(128, 163)(129, 147)(130, 160)(131, 184)(132, 186)(134, 140)(135, 171)(136, 141)(137, 166)(145, 175)(146, 164)(148, 165)(149, 159)(150, 192)(156, 187)(157, 179)(158, 180)(161, 170)(168, 191)(169, 183)(172, 174)(173, 178)(181, 190)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 159 ]
192
-1 110 154 182 107
-2 154 102 116 152
-3 188 170 138 152
-4 170 192 128 184
-5 137 181 106 184
-6 168 181 109 164
-7 121 102 168 191
-8 146 190 191 108
-9 146 136 116 128
-10 176 155 124 136
-11 124 115 192 164
-12 115 126 130 142
-13 126 108 119 109
-14 177 104 160 119
-15 155 190 180 160
-16 132 178 180 174
-17 132 176 105 130
-18 110 111 112 105
-19 122 112 104 142
-20 122 188 182 98
-21 177 178 149 98
-22 137 138 149 153
-23 111 162 174 153
-24 121 106 107 162
-25 143 191 104 140
-26 134 190 171 98
-27 178 136 139 175
-28 176 133 166 153
-29 111 115 159 173
-30 165 189 107 142
-31 103 182 129 119
-32 177 118 151 152
-33 99 169 180 138
-34 150 184 174 186
-35 105 106 117 161
-36 110 168 125 97
-37 187 122 101 102
-38 188 123 146 147
-39 100 157 149 128
-40 113 124 114 137
-41 162 141 163 164
-42 121 144 145 126
-43 154 167 135 108
-44 156 116 160 120
-45 155 148 170 185
-46 132 192 172 131
-47 158 181 127 130
-48 112 179 183 109
-49 191 182 139 185
-50 114 116 172 98
-51 136 159 127 138
-52 145 179 192 153
-53 143 103 115 106
-54 171 107 109 120
-55 99 102 119 175
-56 166 190 152 131
-57 180 128 161 173
-58 165 176 183 184
-59 101 105 129 164
-60 134 168 118 142
-61 122 157 169 108
-62 133 177 146 150
-63 155 149 117 141
-64 189 124 125 174
-65 187 167 162 130
-66 110 147 126 151
-67 154 100 104 148
-68 188 113 160 186
-69 178 158 170 163
-70 132 144 137 97
-71 111 135 181 140
-72 121 112 123 156
-73 100 133 139 172
-74 166 114 159 117
-75 189 179 159 163
-76 165 187 145 103
-77 135 103 171 151
-78 99 100 118 120
-79 99 166 185 186
-80 150 161 163 131
-81 165 127 161 97
-82 101 135 125 183
-83 143 101 123 118
-84 134 157 147 185
-85 157 114 150 175
-86 133 113 127 141
-87 145 125 173 141
-88 143 144 167 189
-89 167 147 129 120
-90 156 148 151 175
-91 113 169 148 131
-92 158 172 173 186
-93 144 158 117 183
-94 179 129 140 97
-95 187 134 156 140
-96 123 169 171 139
-97 36 70 81 94
-98 26 50 20 21
-99 33 55 78 79
-100 67 78 39 73
-101 37 59 82 83
-102 55 2 37 7
-103 77 31 53 76
-104 67 14 25 19
-105 35 59 17 18
-106 24 35 5 53
-107 1 24 30 54
-108 13 61 8 43
-109 13 48 6 54
-110 66 1 36 18
-111 23 71 18 29
-112 48 72 18 19
-113 68 91 40 86
-114 50 40 74 85
-115 11 12 29 53
-116 44 2 50 9
-117 35 93 63 74
-118 78 60 83 32
-119 55 13 14 31
-120 44 78 89 54
-121 24 72 7 42
-122 37 61 19 20
-123 38 72 83 96
-124 11 40 64 10
-125 36 82 64 87
-126 66 12 13 42
-127 47 81 51 86
-128 57 4 39 9
-129 89 59 94 31
-130 12 47 17 65
-131 56 46 80 91
-132 46 70 16 17
-133 28 62 73 86
-134 26 60 84 95
-135 77 71 82 43
-136 27 51 9 10
-137 22 70 5 40
-138 22 33 3 51
-139 27 49 73 96
-140 25 71 94 95
-141 41 63 86 87
-142 12 60 19 30
-143 88 25 83 53
-144 88 70 93 42
-145 52 42 76 87
-146 38 62 8 9
-147 66 89 38 84
-148 45 67 90 91
-149 22 39 63 21
-150 34 80 62 85
-151 66 77 90 32
-152 56 2 3 32
-153 22 23 28 52
-154 1 67 2 43
-155 45 15 63 10
-156 44 90 72 95
-157 39 61 84 85
-158 47 69 92 93
-159 29 51 74 75
-160 44 68 14 15
-161 35 57 80 81
-162 23 24 41 65
-163 69 80 41 75
-164 11 59 6 41
-165 58 81 30 76
-166 56 79 28 74
-167 88 89 43 65
-168 36 60 6 7
-169 33 91 61 96
-170 45 3 69 4
-171 77 26 96 54
-172 46 92 50 73
-173 57 92 29 87
-174 23 34 16 64
-175 55 90 27 85
-176 58 17 28 10
-177 14 62 21 32
-178 69 16 27 21
-179 48 94 52 75
-180 33 57 15 16
-181 47 5 71 6
-182 1 49 20 31
-183 58 48 82 93
-184 34 58 4 5
-185 45 79 49 84
-186 34 68 79 92
-187 37 95 65 76
-188 68 3 38 20
-189 88 30 64 75
-190 56 15 26 8
-191 25 49 7 8
-192 11 46 4 52
0

**************