C4graphGraph forms for C4 [ 192, 160 ] = BGCG(KE_24(1,13,4,21,5);K1;{6,7})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 160 ] = BGCG(KE_24(1,13,4,21,5);K1;{6,7}).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {96, 124}, {73, 105}, {94, 127}, {78, 109}, {89, 122}, {72, 109}, {72, 110}, {89, 127}, {67, 100}, {69, 111}, {77, 103}, {78, 100}, {76, 103}, {86, 125}, {79, 99}, {81, 125}, {73, 100}, {94, 115}, {78, 99}, {66, 108}, {93, 115}, {84, 122}, {93, 114}, {71, 119}, {71, 118}, {77, 124}, {69, 113}, {77, 121}, {70, 115}, {92, 105}, {83, 101}, {78, 121}, {82, 101}, {86, 97}, {64, 120}, {74, 114}, {66, 123}, {91, 97}, {72, 116}, {66, 124}, {83, 109}, {37, 101}, {44, 109}, {33, 99}, {50, 112}, {55, 117}, {39, 100}, {48, 115}, {59, 127}, {36, 108}, {39, 111}, {34, 105}, {54, 122}, {51, 126}, {63, 114}, {51, 125}, {37, 106}, {54, 121}, {40, 120}, {50, 98}, {35, 114}, {42, 123}, {47, 125}, {53, 103}, {45, 126}, {53, 102}, {55, 99}, {61, 106}, {62, 105}, {47, 119}, {32, 121}, {56, 97}, {38, 124}, {48, 107}, {44, 112}, {45, 113}, {54, 107}, {42, 116}, {48, 110}, {54, 104}, {59, 101}, {41, 118}, {26, 122}, {31, 127}, {16, 113}, {23, 118}, {8, 106}, {18, 119}, {13, 107}, {17, 119}, {1, 104}, {31, 117}, {4, 111}, {24, 116}, {1, 108}, {7, 106}, {6, 107}, {6, 118}, {24, 104}, {23, 102}, {2, 112}, {10, 120}, {7, 116}, {11, 120}, {1, 117}, {10, 126}, {13, 123}, {30, 104}, {20, 98}, {2, 117}, {21, 98}, {12, 123}, {26, 98}, {31, 103}, {9, 112}, {21, 111}, {29, 102}, {18, 110}, {3, 126}, {28, 97}, {19, 110}, {15, 113}, {24, 102}, {18, 108}, {33, 161}, {5, 132}, {38, 167}, {29, 156}, {27, 154}, {58, 184}, {27, 152}, {47, 172}, {43, 168}, {33, 162}, {23, 147}, {29, 153}, {62, 186}, {12, 137}, {40, 173}, {22, 147}, {55, 178}, {8, 142}, {9, 142}, {36, 163}, {34, 165}, {56, 191}, {41, 160}, {55, 190}, {57, 176}, {58, 179}, {16, 154}, {49, 187}, {33, 171}, {62, 180}, {9, 133}, {19, 159}, {21, 152}, {43, 166}, {35, 174}, {58, 183}, {18, 156}, {36, 170}, {22, 152}, {10, 133}, {28, 147}, {17, 129}, {2, 144}, {40, 186}, {22, 132}, {16, 130}, {15, 157}, {3, 144}, {42, 185}, {34, 177}, {25, 138}, {17, 130}, {14, 157}, {9, 154}, {25, 141}, {32, 180}, {1, 148}, {34, 183}, {59, 174}, {45, 187}, {60, 170}, {61, 171}, {11, 156}, {30, 137}, {57, 161}, {20, 141}, {44, 181}, {37, 188}, {24, 129}, {53, 172}, {58, 163}, {61, 164}, {19, 137}, {26, 128}, {38, 189}, {60, 167}, {8, 148}, {2, 159}, {27, 134}, {50, 175}, {52, 169}, {56, 165}, {63, 162}, {19, 141}, {25, 135}, {41, 182}, {12, 172}, {16, 177}, {41, 136}, {21, 180}, {3, 161}, {45, 143}, {39, 133}, {35, 129}, {17, 179}, {57, 154}, {4, 161}, {49, 148}, {26, 191}, {23, 177}, {42, 140}, {30, 184}, {25, 190}, {50, 149}, {52, 147}, {57, 158}, {59, 156}, {6, 174}, {43, 131}, {38, 142}, {14, 166}, {56, 144}, {5, 172}, {27, 178}, {20, 189}, {13, 164}, {51, 153}, {5, 174}, {13, 166}, {51, 152}, {61, 150}, {6, 170}, {46, 130}, {40, 132}, {7, 170}, {29, 176}, {15, 162}, {60, 146}, {28, 179}, {14, 190}, {32, 144}, {20, 164}, {15, 191}, {62, 142}, {39, 150}, {44, 157}, {5, 183}, {32, 146}, {4, 183}, {28, 175}, {22, 162}, {60, 137}, {8, 191}, {49, 134}, {30, 169}, {63, 136}, {47, 151}, {7, 190}, {10, 179}, {12, 182}, {37, 159}, {14, 180}, {63, 133}, {31, 164}, {48, 139}, {46, 149}, {49, 141}, {11, 182}, {35, 158}, {3, 189}, {36, 155}, {46, 145}, {43, 148}, {52, 139}, {53, 138}, {65, 129}, {71, 135}, {85, 149}, {70, 132}, {84, 150}, {85, 150}, {4, 192}, {70, 130}, {71, 131}, {80, 149}, {94, 155}, {72, 128}, {90, 146}, {91, 145}, {93, 151}, {11, 192}, {96, 171}, {92, 151}, {64, 140}, {67, 143}, {92, 145}, {95, 146}, {77, 131}, {80, 158}, {73, 134}, {81, 158}, {75, 155}, {82, 131}, {69, 151}, {88, 138}, {75, 153}, {74, 153}, {88, 140}, {91, 143}, {68, 145}, {90, 143}, {95, 135}, {68, 157}, {94, 135}, {82, 139}, {83, 138}, {64, 155}, {87, 140}, {67, 159}, {87, 139}, {86, 136}, {87, 136}, {95, 128}, {88, 184}, {96, 128}, {75, 169}, {79, 173}, {95, 188}, {67, 166}, {93, 184}, {69, 160}, {74, 175}, {76, 169}, {73, 175}, {96, 134}, {74, 173}, {87, 176}, {85, 178}, {81, 185}, {90, 178}, {65, 168}, {68, 173}, {79, 165}, {75, 160}, {86, 186}, {92, 176}, {89, 181}, {46, 192}, {84, 187}, {90, 181}, {85, 186}, {76, 188}, {91, 171}, {88, 168}, {80, 160}, {64, 177}, {89, 168}, {82, 163}, {81, 163}, {84, 167}, {52, 192}, {79, 187}, {83, 167}, {76, 185}, {80, 165}, {65, 182}, {66, 181}, {68, 189}, {65, 188}, {70, 185} }>;

(II) A more general form is to represent the graph as the orbit of {96, 124} under the group generated by the following permutations:

a: (1, 2, 50, 46, 70, 42, 7, 8, 56, 28, 52, 48, 13, 14, 62, 34, 58, 30, 19, 20, 68, 40, 64, 36)(3, 74, 11, 94, 66, 55, 9, 80, 17, 76, 72, 61, 15, 86, 23, 82, 54, 67, 21, 92, 5, 88, 60, 49)(4, 93, 12, 25, 38, 79, 10, 75, 18, 31, 44, 85, 16, 81, 24, 37, 26, 91, 22, 87, 6, 43, 32, 73)(27, 57, 35, 65, 95, 96, 33, 63, 41, 71, 77, 78, 39, 69, 47, 53, 83, 84, 45, 51, 29, 59, 89, 90)(97, 147, 139, 107, 166, 180, 105, 183, 184, 137, 141, 189, 173, 120, 155, 108, 117, 112, 149, 130, 185, 116, 106, 191)(98, 145, 132, 140, 170, 148, 144, 175, 192, 115, 123, 190, 142, 165, 179, 169, 110, 164, 157, 186, 177, 163, 104, 159)(99, 133, 160, 119, 103, 109, 150, 113, 125, 102, 101, 122, 143, 152, 176, 174, 168, 146, 134, 161, 114, 182, 135, 124)(100, 111, 151, 172, 138, 167, 187, 126, 153, 156, 127, 181, 178, 154, 158, 129, 188, 128, 171, 162, 136, 118, 131, 121)
b: (2, 24, 49, 36)(3, 35, 73, 64)(4, 63, 92, 40)(5, 39, 87, 68)(6, 67, 42, 20)(7, 19)(8, 18, 55, 30)(9, 29, 79, 58)(10, 57, 74, 34)(11, 33, 93, 62)(12, 61, 48, 14)(15, 47, 85, 52)(16, 51, 80, 28)(17, 27, 75, 56)(21, 41, 91, 70)(22, 69, 86, 46)(23, 45, 81, 50)(25, 60, 37, 72)(26, 71, 90, 76)(31, 54, 43, 66)(32, 65, 96, 94)(38, 59, 78, 88)(44, 53, 84, 82)(77, 89)(97, 130, 152, 160)(98, 118, 143, 185)(99, 184, 142, 156)(100, 140, 189, 174)(101, 109, 138, 167)(102, 187, 163, 112)(103, 122, 131, 181)(104, 148, 108, 117)(105, 120, 161, 114)(106, 110, 190, 137)(107, 166, 123, 164)(111, 136, 145, 132)(113, 125, 149, 147)(115, 180, 182, 171)(116, 141, 170, 159)(119, 178, 169, 191)(121, 168, 124, 127)(126, 158, 175, 177)(128, 135, 146, 188)(129, 134, 155, 144)(133, 176, 173, 183)(139, 157, 172, 150)(151, 186, 192, 162)(153, 165, 179, 154)
c: (2, 24)(3, 23)(4, 22)(5, 21)(6, 20)(7, 19)(8, 18)(9, 17)(10, 16)(11, 15)(12, 14)(25, 60)(26, 59)(27, 58)(28, 57)(29, 56)(30, 55)(31, 54)(32, 53)(33, 52)(34, 51)(35, 50)(36, 49)(37, 72)(38, 71)(39, 70)(40, 69)(41, 68)(42, 67)(43, 66)(44, 65)(45, 64)(46, 63)(47, 62)(48, 61)(73, 81)(74, 80)(75, 79)(76, 78)(82, 96)(83, 95)(84, 94)(85, 93)(86, 92)(87, 91)(88, 90)(97, 176)(98, 174)(99, 169)(100, 185)(101, 128)(102, 144)(103, 121)(104, 117)(105, 125)(106, 110)(107, 164)(108, 148)(109, 188)(111, 132)(112, 129)(113, 120)(114, 149)(115, 150)(116, 159)(118, 189)(119, 142)(122, 127)(123, 166)(124, 131)(126, 177)(130, 133)(134, 163)(135, 167)(136, 145)(137, 190)(138, 146)(139, 171)(140, 143)(141, 170)(147, 161)(151, 186)(152, 183)(153, 165)(154, 179)(155, 187)(156, 191)(157, 182)(158, 175)(160, 173)(162, 192)(168, 181)(172, 180)(178, 184)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 160 ]
192
-1 104 148 117 108
-2 144 112 159 117
-3 144 189 126 161
-4 111 192 161 183
-5 132 172 183 174
-6 170 107 118 174
-7 190 170 116 106
-8 191 148 106 142
-9 154 133 112 142
-10 133 179 126 120
-11 156 192 182 120
-12 123 137 182 172
-13 166 123 107 164
-14 166 157 190 180
-15 113 157 191 162
-16 154 177 113 130
-17 179 129 119 130
-18 110 156 108 119
-19 110 137 159 141
-20 189 141 98 164
-21 111 180 152 98
-22 132 147 162 152
-23 177 102 147 118
-24 102 104 116 129
-25 135 190 138 141
-26 122 191 128 98
-27 154 134 178 152
-28 179 147 97 175
-29 176 156 102 153
-30 169 104 137 184
-31 103 127 117 164
-32 121 144 146 180
-33 99 171 161 162
-34 165 177 105 183
-35 114 158 129 174
-36 155 170 108 163
-37 188 101 159 106
-38 167 189 124 142
-39 100 111 133 150
-40 132 173 120 186
-41 136 160 182 118
-42 123 116 140 185
-43 166 168 148 131
-44 112 157 181 109
-45 143 187 113 126
-46 145 192 149 130
-47 125 172 151 119
-48 110 115 139 107
-49 187 134 148 141
-50 112 149 98 175
-51 125 126 152 153
-52 147 169 192 139
-53 102 103 138 172
-54 121 122 104 107
-55 99 178 190 117
-56 165 144 191 97
-57 154 176 158 161
-58 179 183 184 163
-59 101 156 127 174
-60 167 146 137 170
-61 171 106 150 164
-62 180 105 142 186
-63 133 114 136 162
-64 155 177 140 120
-65 188 168 182 129
-66 123 124 181 108
-67 143 100 166 159
-68 145 189 157 173
-69 111 113 160 151
-70 132 115 130 185
-71 135 118 119 131
-72 110 116 128 109
-73 100 134 105 175
-74 114 173 153 175
-75 155 169 160 153
-76 188 103 169 185
-77 121 124 103 131
-78 99 121 100 109
-79 99 165 187 173
-80 165 158 149 160
-81 125 158 163 185
-82 101 139 163 131
-83 101 167 138 109
-84 187 122 167 150
-85 178 149 150 186
-86 125 136 97 186
-87 176 136 139 140
-88 168 138 140 184
-89 122 168 181 127
-90 143 178 146 181
-91 143 145 171 97
-92 176 145 105 151
-93 114 115 151 184
-94 155 135 115 127
-95 188 135 146 128
-96 134 124 171 128
-97 56 91 28 86
-98 26 50 20 21
-99 33 55 78 79
-100 67 78 39 73
-101 37 59 82 83
-102 23 24 29 53
-103 77 31 53 76
-104 1 24 30 54
-105 34 92 62 73
-106 37 61 7 8
-107 13 48 6 54
-108 66 1 36 18
-109 44 78 72 83
-110 48 72 18 19
-111 69 4 39 21
-112 44 2 50 9
-113 45 69 15 16
-114 35 93 63 74
-115 48 70 93 94
-116 24 72 7 42
-117 55 1 2 31
-118 23 71 6 41
-119 47 71 17 18
-120 11 40 64 10
-121 77 78 32 54
-122 89 26 84 54
-123 66 12 13 42
-124 66 77 38 96
-125 47 81 51 86
-126 45 3 51 10
-127 89 59 94 31
-128 26 72 95 96
-129 24 35 17 65
-130 46 70 16 17
-131 77 71 82 43
-132 22 70 5 40
-133 39 63 9 10
-134 27 49 73 96
-135 25 71 94 95
-136 41 63 86 87
-137 12 60 19 30
-138 88 25 83 53
-139 48 82 52 87
-140 88 42 64 87
-141 25 49 19 20
-142 38 62 8 9
-143 45 67 90 91
-144 56 2 3 32
-145 46 68 91 92
-146 90 60 95 32
-147 22 23 28 52
-148 1 49 8 43
-149 46 80 50 85
-150 39 61 84 85
-151 47 69 92 93
-152 22 27 51 21
-153 29 51 74 75
-154 57 16 27 9
-155 36 94 64 75
-156 11 59 18 29
-157 44 68 14 15
-158 35 57 80 81
-159 67 2 37 19
-160 69 80 41 75
-161 33 57 3 4
-162 22 33 15 63
-163 36 58 81 82
-164 13 61 20 31
-165 34 56 79 80
-166 67 13 14 43
-167 38 60 83 84
-168 88 89 43 65
-169 30 52 75 76
-170 36 60 6 7
-171 33 91 61 96
-172 12 47 5 53
-173 68 79 40 74
-174 35 59 5 6
-175 28 50 73 74
-176 57 92 29 87
-177 23 34 16 64
-178 55 90 27 85
-179 58 17 28 10
-180 14 62 21 32
-181 44 66 89 90
-182 11 12 41 65
-183 34 58 4 5
-184 88 58 93 30
-185 70 81 42 76
-186 40 62 85 86
-187 45 79 49 84
-188 37 95 65 76
-189 68 3 38 20
-190 55 14 25 7
-191 56 15 26 8
-192 11 46 4 52
0

**************