C4graphGraph forms for C4 [ 192, 161 ] = BGCG(KE_24(1,9,8,5,5);K1;3)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 161 ] = BGCG(KE_24(1,9,8,5,5);K1;3).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {96, 107}, {71, 102}, {90, 123}, {84, 118}, {81, 114}, {93, 120}, {95, 122}, {77, 107}, {91, 125}, {81, 121}, {70, 111}, {68, 104}, {75, 101}, {65, 110}, {90, 117}, {89, 118}, {86, 121}, {65, 112}, {94, 111}, {71, 116}, {77, 126}, {87, 100}, {72, 124}, {92, 104}, {69, 112}, {84, 97}, {76, 122}, {66, 117}, {89, 110}, {81, 105}, {92, 100}, {78, 116}, {89, 99}, {68, 127}, {81, 106}, {78, 115}, {94, 99}, {67, 125}, {76, 114}, {64, 127}, {82, 109}, {59, 123}, {43, 110}, {54, 115}, {46, 104}, {62, 120}, {38, 97}, {52, 124}, {35, 106}, {47, 102}, {36, 109}, {59, 113}, {61, 119}, {53, 126}, {48, 124}, {43, 102}, {57, 119}, {63, 113}, {40, 120}, {45, 125}, {44, 124}, {35, 113}, {32, 115}, {52, 103}, {57, 106}, {37, 112}, {51, 102}, {33, 119}, {51, 101}, {58, 108}, {40, 127}, {48, 103}, {53, 98}, {58, 109}, {41, 112}, {44, 117}, {54, 108}, {36, 127}, {50, 105}, {57, 98}, {60, 97}, {37, 123}, {48, 111}, {56, 103}, {31, 126}, {17, 115}, {7, 100}, {23, 116}, {9, 111}, {20, 114}, {21, 114}, {10, 99}, {4, 110}, {29, 119}, {16, 122}, {9, 99}, {2, 105}, {14, 101}, {8, 100}, {25, 116}, {16, 126}, {31, 113}, {7, 104}, {5, 117}, {11, 123}, {4, 118}, {30, 108}, {5, 118}, {15, 122}, {28, 105}, {14, 120}, {26, 108}, {23, 97}, {1, 121}, {29, 101}, {21, 109}, {17, 107}, {2, 121}, {28, 103}, {25, 98}, {16, 107}, {6, 125}, {20, 106}, {29, 98}, {4, 132}, {41, 169}, {10, 138}, {11, 138}, {39, 166}, {17, 144}, {18, 144}, {37, 167}, {24, 154}, {30, 157}, {43, 168}, {53, 177}, {19, 150}, {30, 152}, {45, 171}, {33, 167}, {3, 132}, {12, 139}, {10, 130}, {26, 146}, {22, 158}, {23, 158}, {62, 183}, {13, 135}, {24, 146}, {49, 186}, {50, 185}, {1, 141}, {29, 145}, {55, 187}, {22, 155}, {43, 166}, {35, 174}, {63, 178}, {2, 140}, {34, 172}, {45, 162}, {35, 178}, {59, 170}, {3, 145}, {18, 128}, {19, 128}, {49, 162}, {47, 188}, {22, 133}, {27, 143}, {44, 184}, {56, 172}, {39, 178}, {3, 149}, {27, 141}, {63, 169}, {86, 192}, {15, 152}, {53, 162}, {57, 174}, {16, 136}, {26, 131}, {6, 156}, {33, 187}, {28, 134}, {61, 167}, {21, 142}, {52, 175}, {15, 147}, {14, 147}, {55, 170}, {46, 176}, {40, 183}, {5, 165}, {47, 143}, {41, 137}, {39, 135}, {59, 155}, {27, 186}, {47, 142}, {32, 129}, {20, 182}, {42, 136}, {51, 145}, {6, 165}, {62, 157}, {8, 172}, {45, 137}, {20, 176}, {19, 182}, {41, 140}, {36, 129}, {28, 185}, {50, 151}, {15, 169}, {36, 130}, {32, 134}, {9, 174}, {24, 191}, {58, 157}, {61, 154}, {23, 191}, {18, 187}, {26, 179}, {9, 163}, {18, 184}, {54, 156}, {62, 148}, {4, 175}, {8, 163}, {1, 173}, {12, 160}, {52, 152}, {13, 160}, {46, 131}, {38, 139}, {10, 164}, {31, 177}, {56, 150}, {27, 170}, {50, 131}, {30, 175}, {38, 148}, {42, 153}, {44, 159}, {63, 140}, {5, 177}, {34, 150}, {21, 161}, {13, 185}, {8, 188}, {24, 173}, {48, 133}, {31, 170}, {54, 131}, {1, 183}, {34, 148}, {12, 186}, {22, 161}, {40, 159}, {60, 139}, {11, 179}, {49, 137}, {19, 171}, {13, 181}, {12, 180}, {55, 143}, {58, 130}, {17, 168}, {46, 151}, {7, 189}, {60, 134}, {61, 135}, {6, 189}, {25, 162}, {14, 181}, {2, 190}, {49, 141}, {32, 156}, {51, 143}, {3, 190}, {42, 151}, {39, 154}, {25, 164}, {60, 129}, {37, 155}, {56, 134}, {11, 180}, {42, 149}, {38, 153}, {34, 157}, {64, 129}, {76, 142}, {70, 133}, {82, 145}, {80, 150}, {7, 192}, {64, 136}, {96, 168}, {77, 133}, {83, 155}, {85, 156}, {74, 128}, {69, 142}, {69, 137}, {83, 158}, {94, 147}, {88, 149}, {79, 128}, {85, 154}, {78, 158}, {91, 139}, {90, 138}, {70, 151}, {96, 179}, {76, 152}, {96, 180}, {64, 149}, {95, 138}, {66, 148}, {72, 159}, {95, 136}, {83, 132}, {75, 147}, {73, 144}, {72, 146}, {66, 153}, {92, 135}, {89, 130}, {68, 159}, {87, 140}, {88, 132}, {79, 146}, {80, 141}, {78, 144}, {70, 153}, {33, 192}, {93, 188}, {71, 166}, {74, 171}, {86, 183}, {71, 164}, {67, 166}, {84, 177}, {65, 167}, {91, 189}, {80, 182}, {67, 171}, {93, 181}, {65, 168}, {87, 190}, {73, 160}, {84, 191}, {86, 189}, {77, 161}, {82, 190}, {91, 180}, {79, 191}, {85, 165}, {67, 178}, {73, 184}, {73, 186}, {74, 185}, {82, 161}, {68, 176}, {79, 187}, {88, 174}, {55, 192}, {94, 169}, {85, 173}, {69, 188}, {66, 184}, {72, 179}, {95, 164}, {88, 163}, {75, 176}, {87, 172}, {83, 175}, {92, 160}, {75, 182}, {80, 173}, {93, 163}, {74, 181}, {90, 165} }>;

(II) A more general form is to represent the graph as the orbit of {96, 107} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24)(25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48)(49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)(73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96)(97, 154, 183, 140, 149, 110, 117, 125, 104, 188, 111, 164, 179, 186, 185, 101, 152, 126, 115, 187, 150, 106, 109, 155)(98, 108, 170, 134, 119, 157, 113, 129, 167, 148, 178, 127, 112, 153, 166, 159, 137, 151, 102, 124, 162, 131, 143, 103)(99, 138, 180, 160, 181, 147, 122, 107, 144, 128, 182, 114, 161, 158, 191, 173, 121, 190, 132, 118, 165, 189, 100, 163)(105, 145, 175, 177, 156, 192, 172, 174, 130, 123, 139, 135, 120, 169, 136, 168, 184, 171, 176, 142, 133, 116, 146, 141)
b: (2, 24)(3, 23)(4, 22)(5, 21)(6, 20)(7, 19)(8, 18)(9, 17)(10, 16)(11, 15)(12, 14)(25, 64)(26, 63)(27, 62)(28, 61)(29, 60)(30, 59)(31, 58)(32, 57)(33, 56)(34, 55)(35, 54)(36, 53)(37, 52)(38, 51)(39, 50)(40, 49)(41, 72)(42, 71)(43, 70)(44, 69)(45, 68)(46, 67)(47, 66)(48, 65)(73, 93)(74, 92)(75, 91)(76, 90)(77, 89)(78, 88)(79, 87)(80, 86)(81, 85)(82, 84)(94, 96)(97, 145)(98, 129)(99, 107)(100, 128)(101, 139)(102, 153)(103, 167)(104, 171)(105, 154)(106, 156)(108, 113)(109, 177)(110, 133)(111, 168)(112, 124)(114, 165)(115, 174)(116, 149)(117, 142)(118, 161)(119, 134)(120, 186)(121, 173)(122, 138)(123, 152)(125, 176)(126, 130)(127, 162)(131, 178)(132, 158)(135, 185)(136, 164)(137, 159)(140, 146)(141, 183)(143, 148)(144, 163)(147, 180)(150, 192)(151, 166)(155, 175)(157, 170)(160, 181)(169, 179)(172, 187)(182, 189)(184, 188)(190, 191)
c: (2, 40)(3, 64)(4, 16)(5, 31)(6, 55)(8, 46)(9, 70)(10, 22)(11, 37)(12, 61)(14, 28)(15, 52)(17, 43)(18, 67)(20, 34)(21, 58)(23, 25)(24, 49)(26, 69)(27, 85)(29, 60)(30, 76)(32, 51)(33, 91)(35, 66)(36, 82)(38, 57)(39, 73)(41, 72)(42, 88)(44, 63)(45, 79)(47, 54)(48, 94)(50, 93)(53, 84)(56, 75)(59, 90)(62, 81)(65, 96)(68, 87)(71, 78)(77, 89)(83, 95)(97, 98)(99, 133)(100, 104)(101, 134)(102, 115)(103, 147)(105, 120)(106, 148)(107, 110)(108, 142)(112, 179)(113, 117)(114, 157)(118, 126)(119, 139)(121, 183)(122, 175)(124, 169)(125, 187)(127, 190)(128, 171)(129, 145)(130, 161)(131, 188)(132, 136)(135, 160)(137, 146)(138, 155)(140, 159)(141, 173)(143, 156)(144, 166)(150, 182)(151, 163)(153, 174)(154, 186)(158, 164)(162, 191)(165, 170)(167, 180)(172, 176)(178, 184)(181, 185)(189, 192)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 161 ]
192
-1 121 183 173 141
-2 121 190 105 140
-3 132 145 190 149
-4 110 132 118 175
-5 165 177 117 118
-6 165 156 189 125
-7 100 189 104 192
-8 100 188 172 163
-9 99 111 163 174
-10 99 138 130 164
-11 123 179 180 138
-12 180 160 139 186
-13 135 181 160 185
-14 101 147 181 120
-15 122 147 169 152
-16 122 136 126 107
-17 144 168 115 107
-18 187 144 128 184
-19 171 182 128 150
-20 176 114 182 106
-21 114 161 109 142
-22 133 155 158 161
-23 158 191 116 97
-24 154 146 191 173
-25 116 162 98 164
-26 146 179 108 131
-27 143 170 141 186
-28 134 103 105 185
-29 101 145 119 98
-30 157 108 152 175
-31 177 113 126 170
-32 134 156 115 129
-33 187 167 192 119
-34 157 148 150 172
-35 178 113 106 174
-36 127 129 130 109
-37 155 112 123 167
-38 148 139 97 153
-39 154 166 178 135
-40 159 127 183 120
-41 112 169 137 140
-42 136 149 151 153
-43 110 166 102 168
-44 124 159 117 184
-45 125 137 171 162
-46 176 104 151 131
-47 143 188 102 142
-48 111 133 124 103
-49 137 162 141 186
-50 105 151 185 131
-51 143 101 145 102
-52 124 103 152 175
-53 177 126 162 98
-54 156 115 108 131
-55 143 187 170 192
-56 134 103 150 172
-57 106 119 174 98
-58 157 108 130 109
-59 155 123 113 170
-60 134 139 129 97
-61 154 167 135 119
-62 157 148 183 120
-63 178 113 169 140
-64 136 127 149 129
-65 110 112 167 168
-66 148 117 184 153
-67 166 178 125 171
-68 176 104 159 127
-69 188 112 137 142
-70 111 133 151 153
-71 166 102 116 164
-72 124 146 179 159
-73 144 160 184 186
-74 181 171 128 185
-75 176 101 147 182
-76 122 114 152 142
-77 133 126 161 107
-78 144 158 115 116
-79 187 146 191 128
-80 182 150 173 141
-81 121 114 105 106
-82 145 190 161 109
-83 132 155 158 175
-84 177 191 118 97
-85 154 165 156 173
-86 121 189 192 183
-87 100 190 172 140
-88 132 149 163 174
-89 99 110 118 130
-90 165 123 138 117
-91 189 125 180 139
-92 100 135 104 160
-93 188 181 163 120
-94 99 111 147 169
-95 122 136 138 164
-96 168 179 180 107
-97 23 38 60 84
-98 57 25 29 53
-99 89 94 9 10
-100 92 7 8 87
-101 14 29 51 75
-102 47 71 51 43
-103 56 48 28 52
-104 46 68 92 7
-105 2 81 28 50
-106 35 57 81 20
-107 77 16 17 96
-108 58 26 30 54
-109 36 58 82 21
-110 89 4 43 65
-111 48 70 94 9
-112 69 37 41 65
-113 35 59 63 31
-114 81 20 21 76
-115 78 17 32 54
-116 23 78 25 71
-117 44 66 90 5
-118 89 4 5 84
-119 33 57 61 29
-120 14 93 40 62
-121 1 2 81 86
-122 15 16 95 76
-123 11 90 37 59
-124 44 48 72 52
-125 45 67 91 6
-126 77 16 31 53
-127 68 36 40 64
-128 79 18 19 74
-129 36 60 64 32
-130 89 36 58 10
-131 46 26 50 54
-132 88 3 4 83
-133 22 77 48 70
-134 56 60 28 32
-135 13 92 39 61
-136 16 95 42 64
-137 45 69 49 41
-138 11 90 95 10
-139 12 91 38 60
-140 2 41 63 87
-141 1 80 27 49
-142 47 69 21 76
-143 55 47 27 51
-144 78 17 18 73
-145 3 82 29 51
-146 24 79 26 72
-147 14 15 94 75
-148 66 34 38 62
-149 88 3 42 64
-150 34 56 80 19
-151 46 70 50 42
-152 15 30 52 76
-153 66 70 38 42
-154 24 39 61 85
-155 22 37 59 83
-156 6 85 32 54
-157 34 58 62 30
-158 22 23 78 83
-159 44 68 72 40
-160 12 13 92 73
-161 22 77 82 21
-162 45 25 49 53
-163 88 93 8 9
-164 25 71 95 10
-165 90 5 6 85
-166 67 71 39 43
-167 33 37 61 65
-168 17 96 43 65
-169 15 94 41 63
-170 55 59 27 31
-171 45 67 19 74
-172 34 56 8 87
-173 1 24 80 85
-174 88 35 57 9
-175 4 83 30 52
-176 46 68 20 75
-177 5 84 31 53
-178 67 35 39 63
-179 11 26 72 96
-180 11 12 91 96
-181 13 14 93 74
-182 80 19 20 75
-183 1 40 62 86
-184 44 66 18 73
-185 13 28 50 74
-186 12 27 49 73
-187 33 55 79 18
-188 47 69 93 8
-189 91 6 7 86
-190 2 3 82 87
-191 23 24 79 84
-192 33 55 7 86
0

**************