C4graphGraph forms for C4 [ 192, 162 ] = BGCG(KE_24(1,11,8,3,7);K1;{1,5})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 162 ] = BGCG(KE_24(1,11,8,3,7);K1;{1,5}).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {96, 111}, {71, 103}, {77, 108}, {80, 113}, {65, 99}, {82, 113}, {73, 109}, {94, 122}, {83, 119}, {79, 106}, {90, 127}, {69, 98}, {72, 111}, {70, 110}, {94, 118}, {89, 113}, {72, 97}, {79, 101}, {77, 102}, {72, 102}, {93, 114}, {64, 112}, {90, 107}, {95, 109}, {68, 119}, {86, 101}, {66, 118}, {92, 104}, {87, 99}, {74, 126}, {81, 100}, {88, 109}, {84, 98}, {87, 97}, {65, 121}, {66, 122}, {68, 124}, {70, 126}, {83, 107}, {84, 108}, {91, 98}, {66, 120}, {70, 122}, {66, 127}, {94, 99}, {85, 104}, {76, 114}, {79, 112}, {93, 98}, {46, 110}, {50, 115}, {62, 127}, {63, 125}, {33, 101}, {59, 125}, {55, 112}, {59, 124}, {47, 103}, {61, 117}, {40, 97}, {32, 106}, {41, 99}, {43, 103}, {59, 119}, {37, 107}, {32, 112}, {44, 124}, {35, 115}, {52, 100}, {57, 105}, {47, 126}, {42, 120}, {36, 119}, {34, 118}, {51, 103}, {61, 107}, {38, 126}, {33, 123}, {49, 109}, {57, 101}, {43, 118}, {35, 125}, {63, 97}, {4, 100}, {9, 105}, {8, 104}, {9, 104}, {21, 116}, {13, 111}, {31, 125}, {22, 116}, {16, 114}, {17, 114}, {27, 120}, {22, 115}, {17, 121}, {29, 117}, {18, 122}, {26, 115}, {29, 113}, {1, 108}, {25, 116}, {20, 123}, {8, 121}, {31, 110}, {24, 105}, {14, 127}, {24, 108}, {26, 111}, {3, 117}, {28, 106}, {14, 120}, {2, 117}, {11, 124}, {12, 116}, {19, 106}, {30, 100}, {18, 110}, {26, 102}, {6, 123}, {5, 123}, {24, 102}, {23, 105}, {7, 121}, {36, 164}, {4, 133}, {10, 139}, {7, 134}, {65, 192}, {54, 180}, {15, 140}, {47, 172}, {26, 153}, {32, 164}, {41, 173}, {49, 181}, {51, 183}, {57, 189}, {61, 185}, {21, 144}, {43, 174}, {1, 135}, {3, 133}, {2, 132}, {50, 180}, {27, 156}, {34, 165}, {55, 176}, {60, 187}, {10, 130}, {15, 135}, {13, 133}, {23, 158}, {39, 174}, {30, 151}, {63, 182}, {31, 149}, {38, 172}, {1, 138}, {9, 130}, {6, 141}, {56, 179}, {59, 176}, {60, 183}, {29, 145}, {46, 162}, {37, 169}, {3, 142}, {45, 160}, {5, 136}, {48, 190}, {50, 188}, {25, 150}, {28, 140}, {58, 170}, {34, 179}, {39, 182}, {15, 157}, {44, 190}, {40, 186}, {19, 129}, {51, 161}, {52, 166}, {62, 172}, {16, 131}, {36, 183}, {18, 129}, {35, 182}, {42, 191}, {44, 186}, {16, 135}, {48, 167}, {10, 146}, {11, 146}, {24, 130}, {30, 132}, {11, 144}, {41, 178}, {27, 128}, {19, 136}, {52, 175}, {4, 152}, {45, 177}, {41, 181}, {20, 136}, {12, 144}, {54, 170}, {5, 152}, {38, 187}, {20, 137}, {56, 165}, {60, 161}, {13, 147}, {12, 147}, {56, 167}, {13, 173}, {17, 177}, {63, 157}, {14, 173}, {44, 143}, {39, 132}, {18, 177}, {54, 149}, {58, 153}, {25, 189}, {53, 145}, {10, 172}, {43, 141}, {40, 142}, {56, 158}, {37, 130}, {49, 150}, {46, 137}, {2, 171}, {42, 131}, {4, 173}, {62, 151}, {1, 171}, {42, 128}, {36, 142}, {23, 189}, {22, 188}, {53, 159}, {9, 162}, {27, 176}, {22, 189}, {55, 156}, {6, 170}, {45, 129}, {38, 138}, {20, 184}, {21, 184}, {48, 157}, {57, 148}, {40, 134}, {31, 176}, {34, 141}, {51, 156}, {21, 165}, {39, 151}, {25, 168}, {55, 134}, {58, 139}, {50, 128}, {54, 132}, {23, 164}, {47, 156}, {28, 175}, {3, 183}, {53, 129}, {11, 190}, {62, 139}, {2, 180}, {49, 135}, {29, 171}, {60, 138}, {12, 187}, {45, 154}, {37, 146}, {17, 166}, {58, 141}, {30, 166}, {61, 133}, {8, 177}, {5, 191}, {35, 153}, {33, 155}, {15, 181}, {8, 179}, {46, 149}, {16, 171}, {14, 181}, {52, 143}, {19, 175}, {48, 140}, {7, 186}, {28, 161}, {53, 136}, {32, 158}, {73, 137}, {88, 152}, {64, 131}, {92, 159}, {82, 145}, {81, 148}, {6, 192}, {93, 155}, {64, 134}, {7, 192}, {75, 140}, {82, 149}, {81, 152}, {95, 150}, {89, 147}, {81, 154}, {67, 143}, {68, 137}, {90, 151}, {86, 155}, {78, 128}, {84, 155}, {86, 153}, {74, 154}, {77, 159}, {75, 159}, {91, 143}, {69, 144}, {72, 157}, {69, 146}, {78, 150}, {71, 158}, {87, 142}, {75, 145}, {79, 148}, {86, 139}, {84, 138}, {93, 131}, {71, 167}, {73, 169}, {33, 192}, {95, 190}, {91, 186}, {65, 163}, {89, 187}, {76, 168}, {69, 160}, {68, 162}, {78, 168}, {85, 179}, {88, 191}, {80, 184}, {71, 174}, {74, 160}, {75, 161}, {76, 166}, {83, 185}, {67, 175}, {94, 178}, {85, 185}, {67, 174}, {92, 178}, {73, 184}, {88, 169}, {80, 163}, {96, 147}, {90, 169}, {87, 163}, {96, 148}, {67, 182}, {76, 185}, {80, 165}, {74, 188}, {83, 164}, {82, 170}, {95, 167}, {70, 188}, {96, 154}, {89, 163}, {78, 180}, {91, 160}, {85, 168}, {92, 162}, {64, 191}, {77, 178} }>;

(II) A more general form is to represent the graph as the orbit of {96, 111} under the group generated by the following permutations:

a: (2, 24)(3, 72)(4, 96)(5, 45)(6, 8)(9, 54)(10, 78)(11, 27)(12, 14)(15, 60)(16, 84)(17, 33)(18, 20)(21, 66)(22, 90)(23, 39)(25, 62)(26, 61)(29, 77)(30, 57)(31, 68)(32, 67)(35, 83)(36, 63)(37, 50)(38, 49)(41, 89)(42, 69)(43, 56)(44, 55)(47, 95)(48, 51)(52, 79)(58, 85)(64, 91)(70, 73)(74, 88)(76, 86)(80, 94)(82, 92)(97, 142)(98, 131)(99, 163)(100, 148)(101, 166)(102, 117)(103, 167)(104, 170)(105, 132)(106, 175)(107, 115)(108, 171)(109, 126)(110, 137)(111, 133)(112, 143)(113, 178)(114, 155)(116, 127)(118, 165)(119, 125)(120, 144)(121, 192)(122, 184)(123, 177)(124, 176)(128, 146)(129, 136)(130, 180)(134, 186)(135, 138)(139, 168)(140, 161)(141, 179)(145, 159)(147, 173)(149, 162)(150, 172)(151, 189)(152, 154)(153, 185)(156, 190)(157, 183)(158, 174)(160, 191)(164, 182)(169, 188)(181, 187)
b: (2, 38)(3, 89)(4, 96)(5, 79)(6, 55)(8, 44)(9, 95)(10, 78)(11, 85)(12, 61)(14, 26)(15, 77)(16, 84)(17, 91)(18, 67)(20, 32)(21, 83)(22, 90)(23, 73)(24, 49)(25, 37)(27, 58)(28, 53)(29, 60)(30, 74)(31, 43)(33, 64)(34, 59)(35, 66)(36, 80)(39, 70)(40, 65)(41, 72)(42, 86)(45, 52)(46, 71)(47, 54)(48, 92)(50, 62)(51, 82)(56, 68)(57, 88)(63, 94)(69, 76)(97, 99)(98, 114)(100, 154)(101, 191)(102, 181)(103, 149)(104, 190)(105, 109)(106, 136)(107, 116)(108, 135)(110, 174)(111, 173)(112, 123)(113, 183)(115, 127)(117, 187)(118, 125)(119, 165)(120, 153)(121, 186)(122, 182)(124, 179)(126, 132)(128, 139)(129, 175)(130, 150)(131, 155)(133, 147)(134, 192)(137, 158)(138, 171)(140, 159)(141, 176)(142, 163)(143, 177)(144, 185)(145, 161)(146, 168)(148, 152)(151, 188)(156, 170)(157, 178)(160, 166)(162, 167)(164, 184)(169, 189)(172, 180)
c: (1, 2, 3, 4, 41, 49)(5, 92, 25, 38, 39, 40)(6, 68, 57, 70, 71, 91)(7, 20, 9, 22, 47, 67)(8, 21, 10, 35, 55, 19)(11, 86, 31, 32, 45, 34)(12, 62, 63, 64, 53, 85)(13, 14, 15, 16, 29, 61)(17, 80, 37, 26, 27, 28)(18, 56, 69, 58, 59, 79)(23, 74, 43, 44, 33, 46)(24, 50, 51, 52, 65, 73)(30, 87, 88, 77, 78, 60)(36, 81, 94, 95, 84, 54)(42, 75, 76, 89, 90, 72)(48, 93, 82, 83, 96, 66)(97, 191, 159, 168, 187, 151)(98, 170, 119, 148, 122, 167)(99, 109, 108, 180, 183, 100)(101, 110, 158, 160, 141, 124)(102, 128, 161, 166, 163, 169)(103, 143, 192, 137, 105, 188)(104, 116, 172, 182, 134, 136)(106, 177, 165, 146, 153, 176)(107, 111, 120, 140, 114, 113)(112, 129, 179, 144, 139, 125)(115, 156, 175, 121, 184, 130)(117, 133, 173, 181, 135, 171)(118, 190, 155, 149, 164, 154)(123, 162, 189, 126, 174, 186)(127, 157, 131, 145, 185, 147)(132, 142, 152, 178, 150, 138)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 162 ]
192
-1 135 138 171 108
-2 132 180 171 117
-3 133 117 183 142
-4 100 133 173 152
-5 123 136 191 152
-6 123 170 192 141
-7 121 134 192 186
-8 121 177 179 104
-9 104 105 162 130
-10 146 139 172 130
-11 144 124 146 190
-12 187 144 147 116
-13 111 133 147 173
-14 181 127 173 120
-15 135 157 181 140
-16 135 114 171 131
-17 121 166 177 114
-18 110 122 177 129
-19 136 106 129 175
-20 123 136 137 184
-21 165 144 116 184
-22 188 189 115 116
-23 189 158 105 164
-24 102 105 108 130
-25 189 168 116 150
-26 111 102 115 153
-27 176 156 128 120
-28 106 161 140 175
-29 145 113 171 117
-30 132 100 166 151
-31 110 176 125 149
-32 112 158 106 164
-33 155 101 123 192
-34 165 179 118 141
-35 125 115 182 153
-36 183 119 142 164
-37 146 169 107 130
-38 187 126 138 172
-39 132 182 151 174
-40 134 97 142 186
-41 99 178 181 173
-42 191 128 120 131
-43 103 118 141 174
-44 143 124 190 186
-45 154 177 160 129
-46 110 137 149 162
-47 156 103 126 172
-48 167 157 190 140
-49 135 181 150 109
-50 188 180 115 128
-51 156 103 161 183
-52 143 100 166 175
-53 145 136 159 129
-54 132 180 170 149
-55 176 112 134 156
-56 165 167 179 158
-57 101 189 148 105
-58 170 139 141 153
-59 176 124 125 119
-60 187 138 161 183
-61 133 117 107 185
-62 127 139 172 151
-63 157 125 182 97
-64 112 134 191 131
-65 99 121 192 163
-66 122 127 118 120
-67 143 182 174 175
-68 124 137 162 119
-69 144 146 160 98
-70 110 122 188 126
-71 167 103 158 174
-72 111 102 157 97
-73 169 137 184 109
-74 154 188 126 160
-75 145 159 161 140
-76 166 168 114 185
-77 178 102 159 108
-78 168 180 128 150
-79 101 112 148 106
-80 165 113 184 163
-81 154 100 148 152
-82 145 113 170 149
-83 107 119 185 164
-84 155 138 108 98
-85 168 179 104 185
-86 155 101 139 153
-87 99 97 163 142
-88 169 191 152 109
-89 187 113 147 163
-90 169 127 107 151
-91 143 160 98 186
-92 178 104 159 162
-93 155 114 98 131
-94 99 122 178 118
-95 167 190 150 109
-96 154 111 147 148
-97 72 40 63 87
-98 69 91 93 84
-99 94 41 65 87
-100 4 81 30 52
-101 33 57 79 86
-102 77 24 26 72
-103 47 71 51 43
-104 92 8 85 9
-105 23 24 57 9
-106 79 28 19 32
-107 90 37 61 83
-108 77 1 24 84
-109 88 49 73 95
-110 46 70 18 31
-111 13 26 72 96
-112 55 79 64 32
-113 89 80 82 29
-114 16 93 17 76
-115 22 35 26 50
-116 22 12 25 21
-117 2 3 61 29
-118 66 34 94 43
-119 68 36 59 83
-120 66 14 27 42
-121 17 7 8 65
-122 66 70 94 18
-123 33 5 6 20
-124 11 44 68 59
-125 35 59 63 31
-126 47 70 38 74
-127 66 90 14 62
-128 78 27 50 42
-129 45 18 19 53
-130 24 37 9 10
-131 16 93 42 64
-132 2 39 30 54
-133 13 3 4 61
-134 55 7 40 64
-135 1 15 16 49
-136 5 19 20 53
-137 46 68 73 20
-138 1 38 60 84
-139 58 62 86 10
-140 15 48 28 75
-141 34 58 6 43
-142 3 36 40 87
-143 44 67 91 52
-144 11 12 69 21
-145 82 29 53 75
-146 11 69 37 10
-147 12 89 13 96
-148 57 79 81 96
-149 46 82 31 54
-150 78 25 49 95
-151 90 39 62 30
-152 88 4 81 5
-153 35 58 26 86
-154 45 81 74 96
-155 33 93 84 86
-156 55 47 27 51
-157 15 48 72 63
-158 23 56 71 32
-159 77 92 53 75
-160 45 69 91 74
-161 60 28 51 75
-162 46 68 92 9
-163 89 80 65 87
-164 23 36 83 32
-165 34 56 80 21
-166 17 30 52 76
-167 56 48 71 95
-168 78 25 85 76
-169 88 90 37 73
-170 58 82 6 54
-171 1 2 16 29
-172 47 38 62 10
-173 13 14 4 41
-174 67 71 39 43
-175 67 28 19 52
-176 55 59 27 31
-177 45 17 18 8
-178 77 92 94 41
-179 34 56 8 85
-180 78 2 50 54
-181 14 15 49 41
-182 67 35 39 63
-183 3 36 60 51
-184 80 73 20 21
-185 61 83 85 76
-186 44 91 7 40
-187 12 89 38 60
-188 22 70 50 74
-189 22 23 57 25
-190 11 44 48 95
-191 88 5 42 64
-192 33 6 7 65
0

**************