C4graphGraph forms for C4 [ 192, 164 ] = BGCG(KE_24(1,11,8,3,7);K1;11)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 164 ] = BGCG(KE_24(1,11,8,3,7);K1;11).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {96, 106}, {96, 127}, {76, 108}, {71, 101}, {72, 106}, {88, 123}, {87, 115}, {75, 110}, {93, 120}, {89, 124}, {77, 104}, {76, 107}, {87, 112}, {83, 116}, {77, 100}, {67, 105}, {95, 117}, {84, 126}, {71, 108}, {92, 119}, {72, 100}, {91, 118}, {94, 115}, {82, 124}, {65, 113}, {79, 127}, {71, 117}, {91, 105}, {81, 99}, {78, 125}, {85, 102}, {69, 113}, {79, 121}, {93, 107}, {64, 120}, {87, 111}, {88, 98}, {92, 102}, {75, 119}, {82, 110}, {84, 104}, {95, 98}, {80, 111}, {59, 123}, {54, 116}, {57, 122}, {45, 105}, {61, 122}, {62, 118}, {55, 126}, {59, 114}, {47, 101}, {58, 112}, {50, 121}, {54, 125}, {63, 114}, {43, 101}, {35, 114}, {42, 120}, {52, 103}, {32, 116}, {37, 113}, {36, 112}, {53, 97}, {51, 101}, {48, 103}, {52, 99}, {58, 109}, {41, 113}, {57, 97}, {33, 122}, {54, 109}, {32, 125}, {37, 123}, {40, 118}, {33, 126}, {56, 103}, {8, 105}, {28, 121}, {4, 99}, {29, 122}, {16, 119}, {13, 106}, {16, 120}, {1, 104}, {11, 98}, {4, 111}, {20, 127}, {3, 111}, {25, 117}, {19, 127}, {31, 114}, {8, 102}, {19, 125}, {12, 98}, {9, 102}, {11, 123}, {26, 106}, {24, 104}, {6, 116}, {30, 109}, {25, 108}, {26, 109}, {11, 115}, {25, 97}, {22, 110}, {15, 119}, {14, 118}, {5, 124}, {23, 110}, {12, 117}, {10, 115}, {7, 126}, {6, 124}, {17, 107}, {10, 112}, {2, 121}, {28, 103}, {23, 108}, {16, 107}, {24, 100}, {29, 97}, {30, 99}, {26, 100}, {31, 158}, {2, 128}, {23, 149}, {3, 128}, {27, 152}, {1, 133}, {18, 150}, {9, 141}, {9, 140}, {44, 169}, {43, 174}, {38, 163}, {29, 155}, {34, 164}, {10, 141}, {45, 170}, {43, 172}, {34, 165}, {17, 150}, {21, 157}, {37, 173}, {56, 176}, {42, 163}, {73, 192}, {1, 139}, {39, 172}, {44, 167}, {50, 185}, {60, 183}, {61, 182}, {14, 130}, {46, 162}, {33, 173}, {63, 179}, {3, 142}, {28, 145}, {15, 130}, {49, 188}, {63, 178}, {20, 154}, {51, 189}, {40, 167}, {19, 131}, {27, 139}, {20, 132}, {61, 173}, {2, 147}, {39, 182}, {38, 183}, {35, 178}, {48, 161}, {5, 151}, {34, 176}, {26, 136}, {24, 138}, {52, 166}, {4, 151}, {10, 153}, {42, 190}, {44, 184}, {43, 191}, {59, 175}, {39, 178}, {3, 155}, {55, 175}, {22, 143}, {41, 179}, {90, 192}, {5, 158}, {49, 170}, {62, 165}, {56, 164}, {12, 146}, {53, 171}, {13, 146}, {22, 137}, {15, 144}, {53, 170}, {58, 165}, {20, 180}, {29, 189}, {21, 181}, {1, 160}, {21, 180}, {2, 160}, {36, 134}, {62, 156}, {22, 181}, {38, 133}, {36, 135}, {28, 185}, {49, 148}, {23, 177}, {46, 136}, {40, 142}, {27, 188}, {32, 135}, {18, 186}, {51, 155}, {19, 186}, {24, 177}, {56, 145}, {11, 161}, {46, 132}, {35, 137}, {18, 184}, {9, 162}, {51, 152}, {53, 158}, {16, 189}, {44, 129}, {50, 159}, {55, 154}, {60, 145}, {6, 168}, {45, 131}, {40, 134}, {7, 169}, {61, 147}, {7, 168}, {37, 138}, {35, 140}, {55, 152}, {58, 149}, {63, 144}, {31, 175}, {57, 137}, {62, 142}, {21, 164}, {48, 129}, {46, 159}, {36, 149}, {32, 145}, {59, 138}, {14, 188}, {47, 157}, {8, 187}, {25, 170}, {27, 175}, {39, 147}, {31, 171}, {42, 159}, {52, 129}, {57, 140}, {15, 185}, {47, 153}, {4, 179}, {47, 152}, {17, 166}, {8, 176}, {30, 166}, {6, 191}, {45, 148}, {41, 144}, {18, 171}, {60, 133}, {38, 156}, {49, 139}, {50, 136}, {5, 190}, {33, 154}, {30, 165}, {13, 182}, {12, 183}, {60, 135}, {7, 187}, {41, 148}, {34, 156}, {54, 136}, {17, 174}, {48, 143}, {67, 131}, {68, 132}, {68, 134}, {75, 143}, {93, 153}, {78, 139}, {64, 134}, {85, 147}, {81, 151}, {64, 135}, {82, 149}, {74, 130}, {94, 150}, {70, 143}, {72, 129}, {80, 155}, {89, 146}, {82, 158}, {92, 144}, {13, 192}, {73, 132}, {14, 192}, {79, 128}, {88, 151}, {93, 141}, {69, 148}, {84, 133}, {79, 154}, {86, 128}, {74, 157}, {69, 157}, {86, 142}, {81, 137}, {70, 159}, {91, 130}, {83, 138}, {86, 140}, {77, 150}, {86, 141}, {69, 153}, {66, 156}, {91, 187}, {66, 163}, {83, 177}, {68, 167}, {96, 131}, {80, 180}, {87, 179}, {81, 181}, {70, 163}, {95, 186}, {85, 176}, {68, 162}, {89, 191}, {88, 190}, {77, 171}, {70, 161}, {95, 184}, {76, 166}, {66, 169}, {71, 172}, {65, 173}, {90, 182}, {78, 160}, {89, 183}, {65, 174}, {67, 172}, {72, 167}, {84, 187}, {94, 174}, {67, 178}, {90, 168}, {96, 146}, {74, 185}, {90, 169}, {78, 186}, {80, 164}, {73, 188}, {85, 160}, {75, 189}, {66, 184}, {83, 168}, {73, 180}, {76, 177}, {64, 190}, {92, 162}, {65, 191}, {74, 181}, {94, 161} }>;

(II) A more general form is to represent the graph as the orbit of {96, 106} under the group generated by the following permutations:

a: (2, 24)(3, 23)(4, 22)(5, 21)(6, 20)(7, 19)(8, 18)(9, 17)(10, 16)(11, 15)(12, 14)(25, 62)(26, 61)(27, 60)(28, 59)(29, 58)(30, 57)(31, 56)(32, 55)(33, 54)(34, 53)(35, 52)(36, 51)(37, 50)(38, 49)(39, 72)(40, 71)(41, 70)(42, 69)(43, 68)(44, 67)(45, 66)(46, 65)(47, 64)(48, 63)(73, 89)(74, 88)(75, 87)(76, 86)(77, 85)(78, 84)(79, 83)(80, 82)(90, 96)(91, 95)(92, 94)(97, 165)(98, 130)(99, 137)(100, 147)(101, 134)(102, 150)(103, 114)(104, 160)(105, 184)(106, 182)(107, 141)(108, 142)(109, 122)(110, 111)(112, 189)(113, 159)(115, 119)(116, 154)(117, 118)(120, 153)(121, 138)(123, 185)(124, 180)(125, 126)(127, 168)(128, 177)(129, 178)(131, 169)(132, 191)(133, 139)(135, 152)(136, 173)(140, 166)(143, 179)(144, 161)(145, 175)(146, 192)(148, 163)(149, 155)(151, 181)(156, 170)(157, 190)(158, 164)(162, 174)(167, 172)(171, 176)(183, 188)(186, 187)
b: (2, 49)(3, 41)(5, 52)(6, 44)(8, 55)(9, 47)(11, 58)(12, 26)(14, 61)(15, 29)(17, 64)(18, 32)(20, 67)(21, 35)(23, 70)(24, 38)(25, 50)(27, 85)(28, 53)(30, 88)(31, 56)(33, 91)(34, 59)(36, 94)(37, 62)(39, 73)(40, 65)(42, 76)(43, 68)(45, 79)(46, 71)(48, 82)(51, 92)(54, 95)(57, 74)(60, 77)(63, 80)(66, 83)(69, 86)(72, 89)(97, 185)(98, 109)(99, 151)(100, 183)(101, 162)(102, 152)(103, 158)(104, 133)(105, 154)(106, 146)(107, 120)(108, 159)(110, 143)(111, 179)(112, 115)(113, 142)(114, 164)(116, 184)(117, 136)(118, 173)(119, 189)(121, 170)(122, 130)(123, 165)(124, 129)(125, 186)(126, 187)(127, 131)(128, 148)(132, 172)(134, 174)(135, 150)(137, 181)(138, 156)(139, 160)(140, 157)(141, 153)(144, 155)(145, 171)(147, 188)(149, 161)(163, 177)(166, 190)(167, 191)(168, 169)(175, 176)(178, 180)(182, 192)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24)(25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48)(49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)(73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96)(97, 109, 175, 145, 122, 165, 114, 135, 173, 156, 178, 134, 113, 163, 172, 167, 148, 159, 101, 129, 170, 136, 152, 103)(98, 146, 192, 130, 119, 107, 150, 186, 127, 180, 181, 110, 177, 104, 160, 128, 111, 151, 124, 168, 187, 102, 141, 115)(99, 158, 116, 126, 176, 140, 112, 123, 183, 182, 118, 144, 120, 174, 184, 131, 132, 157, 143, 108, 100, 139, 121, 155)(105, 162, 153, 161, 117, 106, 188, 185, 189, 166, 171, 125, 154, 164, 137, 149, 138, 133, 147, 142, 179, 190, 191, 169)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 164 ]
192
-1 133 104 160 139
-2 121 147 160 128
-3 111 155 128 142
-4 99 111 179 151
-5 124 190 158 151
-6 124 168 191 116
-7 187 168 169 126
-8 176 187 102 105
-9 102 140 162 141
-10 112 115 141 153
-11 123 115 161 98
-12 146 117 183 98
-13 146 192 182 106
-14 188 192 118 130
-15 144 119 130 185
-16 189 107 119 120
-17 166 150 107 174
-18 171 150 184 186
-19 125 127 131 186
-20 132 154 180 127
-21 157 180 181 164
-22 110 143 137 181
-23 110 177 149 108
-24 100 177 104 138
-25 170 117 97 108
-26 100 136 106 109
-27 188 139 152 175
-28 121 145 103 185
-29 122 155 189 97
-30 99 165 166 109
-31 114 158 171 175
-32 145 135 125 116
-33 154 122 126 173
-34 165 176 156 164
-35 178 114 137 140
-36 112 134 135 149
-37 123 113 138 173
-38 133 156 183 163
-39 178 147 182 172
-40 134 167 118 142
-41 144 113 179 148
-42 190 159 163 120
-43 101 191 172 174
-44 167 169 129 184
-45 148 170 105 131
-46 132 136 159 162
-47 101 157 152 153
-48 143 103 161 129
-49 188 148 170 139
-50 121 136 159 185
-51 155 101 189 152
-52 99 166 103 129
-53 158 170 171 97
-54 125 136 116 109
-55 154 126 152 175
-56 176 145 103 164
-57 122 137 140 97
-58 165 112 149 109
-59 123 114 138 175
-60 133 145 135 183
-61 122 147 182 173
-62 165 156 118 142
-63 144 178 179 114
-64 134 135 190 120
-65 113 191 173 174
-66 156 169 184 163
-67 178 105 172 131
-68 132 134 167 162
-69 113 157 148 153
-70 143 159 161 163
-71 101 117 172 108
-72 100 167 106 129
-73 132 188 180 192
-74 157 181 130 185
-75 110 143 189 119
-76 166 177 107 108
-77 100 104 171 150
-78 125 160 139 186
-79 121 154 127 128
-80 111 155 180 164
-81 99 137 181 151
-82 110 124 158 149
-83 177 168 116 138
-84 187 133 104 126
-85 176 102 147 160
-86 128 140 141 142
-87 111 112 179 115
-88 123 190 151 98
-89 124 146 191 183
-90 168 169 192 182
-91 187 105 118 130
-92 144 102 162 119
-93 107 141 120 153
-94 115 150 161 174
-95 117 184 98 186
-96 146 127 106 131
-97 57 25 29 53
-98 11 88 12 95
-99 4 81 30 52
-100 77 24 26 72
-101 47 71 51 43
-102 92 8 85 9
-103 56 48 28 52
-104 77 1 24 84
-105 45 67 91 8
-106 13 26 72 96
-107 16 93 17 76
-108 23 25 71 76
-109 58 26 30 54
-110 22 23 82 75
-111 3 80 4 87
-112 36 58 10 87
-113 69 37 41 65
-114 35 59 63 31
-115 11 94 10 87
-116 6 83 32 54
-117 12 25 71 95
-118 14 91 40 62
-119 15 92 16 75
-120 16 93 42 64
-121 2 79 28 50
-122 33 57 61 29
-123 11 88 37 59
-124 89 5 82 6
-125 78 19 32 54
-126 33 55 7 84
-127 79 19 96 20
-128 2 79 3 86
-129 44 48 72 52
-130 14 91 15 74
-131 45 67 19 96
-132 46 68 73 20
-133 1 38 60 84
-134 68 36 40 64
-135 36 60 64 32
-136 46 26 50 54
-137 22 35 57 81
-138 24 37 59 83
-139 1 78 27 49
-140 35 57 9 86
-141 93 9 86 10
-142 3 40 62 86
-143 22 48 70 75
-144 15 92 41 63
-145 56 60 28 32
-146 12 89 13 96
-147 2 39 61 85
-148 45 69 49 41
-149 23 36 58 82
-150 77 17 94 18
-151 88 4 81 5
-152 55 47 27 51
-153 47 69 93 10
-154 33 55 79 20
-155 3 80 29 51
-156 66 34 38 62
-157 47 69 74 21
-158 5 82 31 53
-159 46 70 50 42
-160 1 78 2 85
-161 11 48 70 94
-162 46 68 92 9
-163 66 70 38 42
-164 34 56 80 21
-165 34 58 62 30
-166 17 30 52 76
-167 44 68 72 40
-168 90 6 83 7
-169 44 66 90 7
-170 45 25 49 53
-171 77 18 31 53
-172 67 71 39 43
-173 33 37 61 65
-174 17 94 43 65
-175 55 59 27 31
-176 34 56 8 85
-177 23 24 83 76
-178 67 35 39 63
-179 4 41 63 87
-180 80 73 20 21
-181 22 81 74 21
-182 13 90 39 61
-183 12 89 38 60
-184 44 66 18 95
-185 15 28 50 74
-186 78 18 95 19
-187 91 7 84 8
-188 14 27 49 73
-189 16 29 51 75
-190 88 5 42 64
-191 89 6 43 65
-192 13 90 14 73
0

**************