C4graphGraph forms for C4 [ 192, 165 ] = BGCG(AMC(6,8,[5.5:5.2]);K1;{7,8})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 165 ] = BGCG(AMC(6,8,[5.5:5.2]);K1;{7,8}).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {96, 109}, {96, 118}, {96, 122}, {66, 99}, {93, 124}, {89, 120}, {69, 102}, {83, 112}, {64, 101}, {89, 124}, {68, 97}, {73, 111}, {87, 113}, {75, 109}, {82, 117}, {87, 112}, {73, 97}, {91, 114}, {73, 99}, {92, 118}, {91, 113}, {85, 126}, {94, 117}, {66, 111}, {95, 114}, {85, 120}, {69, 107}, {84, 122}, {66, 109}, {81, 126}, {68, 117}, {89, 104}, {71, 118}, {79, 125}, {75, 120}, {79, 124}, {71, 115}, {91, 111}, {72, 124}, {69, 112}, {93, 104}, {72, 125}, {66, 116}, {80, 102}, {85, 98}, {78, 118}, {94, 102}, {87, 111}, {84, 109}, {80, 107}, {89, 98}, {68, 120}, {90, 102}, {73, 117}, {78, 115}, {78, 112}, {64, 127}, {75, 116}, {37, 101}, {44, 108}, {39, 103}, {50, 115}, {53, 119}, {54, 116}, {52, 119}, {33, 101}, {35, 103}, {55, 115}, {43, 110}, {56, 125}, {34, 106}, {39, 110}, {38, 106}, {49, 127}, {51, 125}, {59, 116}, {50, 99}, {40, 123}, {61, 110}, {45, 121}, {42, 127}, {44, 123}, {33, 121}, {57, 97}, {38, 127}, {46, 119}, {56, 97}, {48, 108}, {50, 110}, {42, 119}, {53, 107}, {59, 101}, {61, 99}, {52, 107}, {8, 104}, {26, 123}, {1, 100}, {28, 121}, {4, 98}, {15, 105}, {19, 123}, {19, 121}, {3, 104}, {4, 105}, {15, 98}, {16, 126}, {11, 122}, {21, 103}, {30, 108}, {27, 105}, {24, 106}, {1, 114}, {2, 113}, {6, 114}, {16, 100}, {11, 126}, {17, 100}, {29, 106}, {28, 100}, {30, 103}, {23, 108}, {6, 122}, {13, 113}, {20, 105}, {7, 135}, {11, 138}, {22, 151}, {18, 144}, {44, 174}, {27, 153}, {24, 154}, {56, 186}, {41, 170}, {57, 186}, {63, 188}, {58, 190}, {2, 135}, {40, 173}, {31, 154}, {5, 131}, {40, 174}, {7, 129}, {4, 131}, {45, 170}, {38, 161}, {36, 163}, {27, 156}, {22, 145}, {12, 139}, {20, 156}, {21, 157}, {52, 188}, {9, 128}, {36, 173}, {54, 191}, {29, 151}, {18, 153}, {42, 161}, {40, 163}, {34, 169}, {27, 144}, {53, 190}, {57, 178}, {7, 139}, {8, 132}, {62, 178}, {9, 132}, {12, 129}, {14, 128}, {49, 191}, {31, 145}, {16, 158}, {38, 169}, {20, 132}, {47, 191}, {23, 135}, {62, 174}, {24, 137}, {47, 190}, {8, 154}, {19, 129}, {11, 153}, {56, 170}, {35, 176}, {43, 191}, {46, 186}, {61, 169}, {21, 128}, {60, 169}, {21, 131}, {31, 137}, {18, 133}, {25, 142}, {7, 159}, {34, 186}, {32, 184}, {3, 154}, {33, 184}, {30, 135}, {51, 170}, {58, 163}, {16, 138}, {20, 142}, {10, 145}, {59, 160}, {8, 148}, {25, 133}, {63, 163}, {2, 159}, {37, 184}, {35, 190}, {28, 129}, {25, 132}, {23, 138}, {9, 148}, {51, 174}, {15, 145}, {30, 128}, {60, 162}, {1, 158}, {47, 176}, {6, 153}, {61, 162}, {12, 172}, {48, 144}, {46, 142}, {41, 137}, {13, 172}, {17, 176}, {57, 152}, {4, 166}, {48, 146}, {39, 133}, {52, 150}, {5, 166}, {32, 131}, {45, 137}, {54, 146}, {55, 147}, {10, 175}, {62, 152}, {2, 165}, {22, 177}, {3, 164}, {13, 165}, {50, 155}, {59, 146}, {63, 150}, {5, 175}, {32, 138}, {26, 176}, {14, 164}, {13, 167}, {12, 167}, {48, 155}, {29, 177}, {34, 142}, {55, 155}, {43, 133}, {23, 184}, {60, 147}, {1, 177}, {17, 161}, {31, 173}, {33, 147}, {58, 136}, {62, 140}, {14, 189}, {49, 130}, {46, 157}, {37, 150}, {60, 143}, {9, 189}, {36, 144}, {54, 130}, {41, 156}, {36, 146}, {3, 180}, {49, 134}, {44, 155}, {42, 157}, {19, 164}, {18, 165}, {6, 177}, {58, 141}, {63, 136}, {47, 151}, {53, 141}, {55, 143}, {10, 179}, {37, 156}, {14, 180}, {29, 167}, {22, 173}, {35, 152}, {15, 179}, {43, 151}, {25, 165}, {28, 161}, {32, 157}, {26, 164}, {45, 147}, {24, 167}, {41, 150}, {39, 152}, {51, 140}, {76, 143}, {92, 159}, {70, 130}, {90, 158}, {5, 192}, {64, 134}, {74, 140}, {82, 148}, {83, 149}, {65, 134}, {74, 141}, {79, 136}, {86, 158}, {10, 192}, {95, 149}, {94, 148}, {76, 134}, {65, 141}, {67, 143}, {70, 136}, {67, 140}, {77, 130}, {17, 192}, {65, 149}, {93, 139}, {26, 192}, {81, 139}, {74, 149}, {64, 160}, {86, 182}, {84, 181}, {90, 185}, {76, 168}, {82, 182}, {77, 171}, {71, 160}, {84, 179}, {92, 180}, {72, 162}, {87, 189}, {81, 187}, {67, 168}, {92, 183}, {88, 179}, {80, 187}, {88, 180}, {70, 171}, {88, 181}, {83, 189}, {85, 187}, {77, 162}, {88, 183}, {86, 185}, {80, 160}, {95, 175}, {91, 171}, {70, 181}, {67, 183}, {95, 171}, {76, 185}, {93, 168}, {69, 178}, {75, 188}, {65, 185}, {94, 166}, {68, 188}, {81, 168}, {79, 181}, {86, 172}, {77, 182}, {71, 187}, {90, 166}, {78, 178}, {83, 175}, {74, 183}, {72, 182}, {82, 172}, {96, 159} }>;

(II) A more general form is to represent the graph as the orbit of {96, 109} under the group generated by the following permutations:

a: (1, 2, 8, 5, 11, 12, 14, 15)(3, 10, 6, 13, 9, 4, 16, 7)(17, 96, 24, 83, 27, 86, 30, 89)(18, 82, 21, 85, 28, 92, 31, 95)(19, 88, 22, 91, 25, 94, 32, 81)(20, 90, 23, 93, 26, 84, 29, 87)(33, 67, 40, 70, 43, 73, 46, 80)(34, 69, 37, 76, 44, 79, 47, 66)(35, 75, 38, 78, 41, 65, 48, 72)(36, 77, 39, 68, 42, 71, 45, 74)(49, 50, 56, 53, 59, 60, 62, 63)(51, 58, 54, 61, 57, 52, 64, 55)(97, 119, 160, 147, 140, 163, 130, 110)(98, 100, 159, 154, 175, 153, 172, 128)(99, 186, 107, 101, 143, 174, 136, 191)(102, 184, 168, 123, 181, 151, 111, 142)(103, 120, 161, 118, 137, 149, 144, 182)(104, 192, 122, 167, 189, 105, 158, 135)(106, 112, 156, 185, 108, 124, 176, 109)(113, 132, 166, 138, 139, 164, 179, 177)(114, 165, 148, 131, 126, 129, 180, 145)(115, 170, 141, 146, 162, 152, 188, 127)(116, 169, 178, 150, 134, 155, 125, 190)(117, 157, 187, 121, 183, 173, 171, 133)
b: (1, 17)(2, 30)(3, 27)(4, 24)(5, 29)(6, 26)(7, 23)(8, 20)(9, 25)(10, 22)(11, 19)(12, 32)(13, 21)(14, 18)(15, 31)(16, 28)(33, 81)(34, 94)(35, 91)(36, 88)(37, 93)(38, 90)(39, 87)(40, 84)(41, 89)(42, 86)(43, 83)(44, 96)(45, 85)(46, 82)(47, 95)(48, 92)(49, 65)(50, 78)(51, 75)(52, 72)(53, 77)(54, 74)(55, 71)(56, 68)(57, 73)(58, 70)(59, 67)(60, 80)(61, 69)(62, 66)(63, 79)(64, 76)(98, 137)(99, 178)(101, 168)(102, 169)(103, 113)(104, 156)(105, 154)(106, 166)(107, 162)(108, 159)(109, 174)(110, 112)(111, 152)(114, 176)(116, 140)(117, 186)(118, 155)(119, 182)(120, 170)(121, 126)(122, 123)(124, 150)(125, 188)(127, 185)(128, 165)(129, 138)(130, 141)(131, 167)(133, 189)(139, 184)(142, 148)(143, 160)(144, 180)(146, 183)(147, 187)(149, 191)(151, 175)(153, 164)(157, 172)(158, 161)(163, 181)(171, 190)(173, 179)(177, 192)
c: (2, 15)(3, 9)(4, 7)(5, 12)(8, 14)(10, 13)(17, 86)(18, 84)(19, 94)(20, 92)(21, 93)(22, 91)(23, 85)(24, 83)(25, 88)(26, 82)(27, 96)(28, 90)(29, 95)(30, 89)(31, 87)(32, 81)(33, 80)(34, 74)(35, 72)(36, 66)(37, 71)(38, 65)(39, 79)(40, 73)(41, 78)(42, 76)(43, 70)(44, 68)(45, 69)(46, 67)(47, 77)(48, 75)(50, 63)(51, 57)(52, 55)(53, 60)(56, 62)(58, 61)(97, 174)(98, 135)(99, 163)(100, 158)(101, 160)(102, 121)(103, 124)(104, 128)(105, 159)(106, 149)(107, 147)(108, 120)(109, 144)(110, 136)(111, 173)(112, 137)(113, 145)(114, 177)(115, 150)(116, 146)(117, 123)(118, 156)(119, 143)(122, 153)(125, 152)(126, 138)(127, 134)(129, 166)(130, 191)(131, 139)(132, 180)(133, 181)(140, 186)(141, 169)(142, 183)(148, 164)(151, 171)(154, 189)(155, 188)(157, 168)(161, 185)(162, 190)(165, 179)(167, 175)(170, 178)(172, 192)(176, 182)(184, 187)
d: (2, 4)(5, 13)(6, 16)(7, 15)(8, 14)(10, 12)(17, 29)(18, 32)(19, 31)(20, 30)(21, 25)(22, 28)(23, 27)(24, 26)(33, 36)(34, 35)(37, 48)(38, 47)(39, 46)(40, 45)(41, 44)(42, 43)(50, 52)(53, 61)(54, 64)(55, 63)(56, 62)(58, 60)(65, 77)(66, 80)(67, 79)(68, 78)(69, 73)(70, 76)(71, 75)(72, 74)(81, 84)(82, 83)(85, 96)(86, 95)(87, 94)(88, 93)(89, 92)(90, 91)(97, 178)(98, 159)(99, 107)(100, 177)(101, 146)(102, 111)(103, 142)(104, 180)(105, 135)(106, 176)(108, 156)(109, 187)(110, 119)(112, 117)(113, 166)(114, 158)(115, 188)(116, 160)(118, 120)(121, 173)(122, 126)(123, 137)(124, 183)(125, 140)(127, 191)(128, 132)(129, 145)(130, 134)(131, 165)(133, 157)(136, 143)(138, 153)(139, 179)(141, 162)(144, 184)(147, 163)(148, 189)(149, 182)(150, 155)(151, 161)(152, 186)(154, 164)(167, 192)(168, 181)(169, 190)(170, 174)(171, 185)(172, 175)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 165 ]
192
-1 100 177 114 158
-2 165 113 135 159
-3 154 180 104 164
-4 166 105 98 131
-5 166 192 131 175
-6 122 177 114 153
-7 135 159 139 129
-8 132 154 104 148
-9 132 189 148 128
-10 145 179 192 175
-11 122 126 138 153
-12 167 139 172 129
-13 165 167 113 172
-14 189 180 128 164
-15 145 179 105 98
-16 100 158 126 138
-17 176 100 192 161
-18 165 133 144 153
-19 121 123 129 164
-20 132 156 105 142
-21 157 103 128 131
-22 177 145 151 173
-23 135 138 184 108
-24 154 167 137 106
-25 132 165 133 142
-26 176 123 192 164
-27 144 156 105 153
-28 121 100 161 129
-29 177 167 106 151
-30 135 103 128 108
-31 154 145 137 173
-32 157 138 184 131
-33 121 101 147 184
-34 169 106 142 186
-35 176 190 103 152
-36 144 146 173 163
-37 101 156 150 184
-38 169 127 106 161
-39 110 133 103 152
-40 123 173 163 174
-41 156 137 170 150
-42 157 127 161 119
-43 110 133 191 151
-44 155 123 108 174
-45 121 147 137 170
-46 157 119 142 186
-47 176 190 191 151
-48 144 155 146 108
-49 134 191 127 130
-50 99 110 155 115
-51 125 170 140 174
-52 188 150 107 119
-53 190 107 119 141
-54 146 191 116 130
-55 143 155 147 115
-56 125 170 97 186
-57 178 97 152 186
-58 190 136 141 163
-59 101 146 116 160
-60 143 147 169 162
-61 99 110 169 162
-62 178 140 152 174
-63 188 136 150 163
-64 101 134 127 160
-65 134 149 141 185
-66 99 111 116 109
-67 143 168 183 140
-68 188 117 97 120
-69 112 178 102 107
-70 136 181 171 130
-71 187 115 160 118
-72 124 125 182 162
-73 99 111 117 97
-74 149 183 140 141
-75 188 116 109 120
-76 143 134 168 185
-77 171 182 162 130
-78 112 178 115 118
-79 124 125 136 181
-80 187 102 160 107
-81 187 168 126 139
-82 148 182 117 172
-83 112 189 149 175
-84 122 179 181 109
-85 187 126 98 120
-86 158 182 172 185
-87 111 112 189 113
-88 179 180 181 183
-89 124 104 98 120
-90 166 102 158 185
-91 111 113 114 171
-92 180 159 183 118
-93 124 168 104 139
-94 166 102 148 117
-95 114 149 171 175
-96 122 159 118 109
-97 56 57 68 73
-98 89 4 15 85
-99 66 50 61 73
-100 1 16 17 28
-101 33 37 59 64
-102 90 69 80 94
-103 35 39 30 21
-104 89 3 93 8
-105 4 15 27 20
-106 34 24 38 29
-107 69 80 52 53
-108 44 23 48 30
-109 66 84 96 75
-110 39 50 61 43
-111 66 91 73 87
-112 78 69 83 87
-113 2 13 91 87
-114 1 91 6 95
-115 55 78 71 50
-116 66 59 75 54
-117 68 82 94 73
-118 78 92 71 96
-119 46 52 42 53
-120 89 68 85 75
-121 33 45 28 19
-122 11 6 84 96
-123 44 26 40 19
-124 89 79 93 72
-125 56 79 72 51
-126 11 81 16 85
-127 38 49 42 64
-128 14 30 9 21
-129 12 28 7 19
-130 77 70 49 54
-131 4 5 21 32
-132 25 8 9 20
-133 25 39 18 43
-134 49 64 65 76
-135 23 2 7 30
-136 79 58 70 63
-137 45 24 41 31
-138 11 23 16 32
-139 12 81 93 7
-140 67 51 62 74
-141 58 74 53 65
-142 34 46 25 20
-143 55 67 60 76
-144 36 48 27 18
-145 22 15 31 10
-146 36 48 59 54
-147 33 55 45 60
-148 82 94 8 9
-149 83 95 74 65
-150 37 41 52 63
-151 22 47 29 43
-152 35 57 39 62
-153 11 27 6 18
-154 24 3 8 31
-155 44 55 48 50
-156 37 27 41 20
-157 46 42 21 32
-158 1 90 16 86
-159 2 92 7 96
-160 80 59 71 64
-161 38 17 28 42
-162 77 60 61 72
-163 36 58 40 63
-164 3 14 26 19
-165 2 13 25 18
-166 90 4 5 94
-167 12 13 24 29
-168 67 81 93 76
-169 34 38 60 61
-170 45 56 51 41
-171 77 91 70 95
-172 12 13 82 86
-173 22 36 40 31
-174 44 40 51 62
-175 5 83 95 10
-176 35 47 26 17
-177 22 1 6 29
-178 78 57 69 62
-179 88 15 84 10
-180 88 3 14 92
-181 88 79 70 84
-182 77 82 72 86
-183 88 67 92 74
-184 33 23 37 32
-185 90 86 65 76
-186 34 56 46 57
-187 80 81 71 85
-188 68 52 63 75
-189 14 83 9 87
-190 35 47 58 53
-191 47 49 43 54
-192 26 5 17 10
0

**************