C4graphGraph forms for C4 [ 192, 167 ] = BGCG(UG(ATD[96,4]);K1;{3,5})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 167 ] = BGCG(UG(ATD[96,4]);K1;{3,5}).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {96, 101}, {96, 104}, {88, 121}, {75, 105}, {91, 121}, {75, 104}, {74, 111}, {92, 121}, {88, 125}, {81, 118}, {84, 125}, {87, 126}, {70, 108}, {77, 103}, {68, 105}, {85, 123}, {89, 119}, {66, 109}, {89, 105}, {65, 112}, {80, 97}, {70, 116}, {92, 110}, {77, 127}, {95, 107}, {69, 112}, {66, 116}, {73, 126}, {88, 111}, {67, 123}, {74, 114}, {82, 106}, {87, 111}, {90, 99}, {75, 113}, {70, 125}, {83, 111}, {86, 106}, {95, 98}, {78, 112}, {84, 106}, {81, 110}, {48, 113}, {51, 113}, {49, 117}, {57, 125}, {61, 120}, {42, 108}, {32, 103}, {48, 121}, {58, 115}, {53, 126}, {41, 100}, {51, 126}, {42, 103}, {63, 114}, {35, 109}, {44, 99}, {52, 100}, {58, 106}, {36, 117}, {63, 110}, {45, 127}, {36, 119}, {54, 101}, {58, 105}, {46, 122}, {33, 119}, {52, 98}, {48, 102}, {34, 116}, {55, 97}, {56, 110}, {33, 118}, {59, 108}, {53, 108}, {49, 107}, {44, 119}, {61, 102}, {41, 117}, {33, 124}, {37, 123}, {50, 109}, {24, 120}, {26, 122}, {30, 127}, {20, 118}, {25, 122}, {23, 115}, {24, 127}, {28, 118}, {3, 104}, {16, 123}, {14, 101}, {9, 98}, {6, 104}, {30, 112}, {15, 97}, {8, 102}, {2, 114}, {29, 109}, {4, 116}, {23, 99}, {9, 124}, {15, 122}, {7, 113}, {29, 107}, {5, 114}, {28, 107}, {21, 98}, {19, 100}, {11, 124}, {11, 115}, {1, 120}, {27, 97}, {29, 103}, {14, 117}, {4, 120}, {14, 115}, {27, 102}, {25, 100}, {29, 99}, {3, 124}, {26, 101}, {5, 133}, {51, 179}, {19, 147}, {11, 139}, {60, 188}, {4, 133}, {48, 177}, {16, 145}, {17, 147}, {42, 168}, {27, 153}, {24, 154}, {63, 189}, {10, 137}, {46, 173}, {22, 149}, {7, 131}, {31, 155}, {23, 147}, {16, 149}, {46, 171}, {6, 128}, {62, 184}, {10, 141}, {28, 155}, {55, 176}, {35, 171}, {38, 174}, {62, 182}, {13, 132}, {49, 184}, {21, 156}, {17, 152}, {74, 192}, {23, 156}, {7, 139}, {38, 170}, {20, 152}, {4, 137}, {22, 155}, {52, 185}, {3, 141}, {18, 156}, {5, 139}, {55, 185}, {36, 171}, {46, 161}, {54, 185}, {19, 131}, {40, 184}, {59, 171}, {39, 182}, {42, 187}, {39, 181}, {59, 169}, {33, 178}, {6, 146}, {37, 177}, {20, 128}, {18, 134}, {10, 158}, {15, 154}, {34, 183}, {22, 131}, {16, 133}, {8, 158}, {40, 190}, {12, 154}, {7, 144}, {34, 181}, {40, 176}, {47, 183}, {57, 161}, {62, 166}, {44, 181}, {51, 170}, {6, 156}, {38, 188}, {32, 186}, {61, 167}, {22, 141}, {59, 160}, {2, 158}, {44, 176}, {63, 163}, {5, 152}, {13, 144}, {12, 146}, {37, 187}, {32, 190}, {31, 129}, {55, 169}, {57, 167}, {43, 180}, {10, 170}, {39, 135}, {31, 191}, {18, 178}, {39, 134}, {53, 148}, {21, 183}, {13, 174}, {43, 143}, {17, 180}, {45, 136}, {56, 157}, {27, 189}, {35, 132}, {62, 153}, {41, 129}, {1, 168}, {41, 128}, {34, 136}, {25, 178}, {49, 154}, {60, 151}, {1, 173}, {40, 132}, {8, 164}, {56, 148}, {19, 190}, {37, 136}, {30, 179}, {26, 183}, {56, 149}, {60, 146}, {2, 173}, {43, 132}, {3, 172}, {58, 149}, {20, 164}, {45, 157}, {43, 155}, {54, 134}, {1, 176}, {35, 146}, {14, 188}, {36, 150}, {18, 160}, {53, 135}, {9, 186}, {45, 158}, {2, 182}, {15, 187}, {11, 191}, {50, 135}, {12, 186}, {47, 153}, {32, 150}, {8, 191}, {38, 145}, {24, 160}, {26, 162}, {12, 181}, {47, 150}, {54, 143}, {52, 142}, {61, 135}, {17, 170}, {57, 130}, {31, 163}, {50, 142}, {9, 180}, {21, 168}, {28, 162}, {13, 178}, {25, 166}, {60, 131}, {76, 142}, {93, 159}, {76, 136}, {80, 148}, {78, 139}, {96, 165}, {79, 138}, {86, 144}, {66, 138}, {87, 159}, {71, 143}, {79, 134}, {73, 133}, {79, 130}, {90, 151}, {82, 159}, {64, 142}, {93, 147}, {76, 130}, {81, 159}, {83, 157}, {94, 145}, {95, 144}, {65, 145}, {71, 151}, {72, 152}, {73, 153}, {93, 140}, {80, 130}, {94, 140}, {95, 140}, {72, 157}, {89, 140}, {88, 141}, {89, 143}, {64, 151}, {86, 129}, {79, 150}, {80, 137}, {83, 138}, {78, 148}, {82, 137}, {91, 128}, {90, 129}, {30, 192}, {96, 190}, {85, 138}, {64, 160}, {71, 166}, {78, 175}, {64, 162}, {65, 163}, {82, 177}, {66, 166}, {72, 172}, {65, 167}, {68, 162}, {85, 179}, {84, 179}, {73, 161}, {92, 180}, {87, 191}, {75, 163}, {68, 174}, {67, 175}, {69, 169}, {77, 161}, {81, 188}, {47, 192}, {67, 172}, {71, 168}, {72, 167}, {84, 164}, {74, 187}, {50, 192}, {93, 175}, {69, 182}, {69, 177}, {91, 175}, {76, 184}, {77, 185}, {91, 174}, {85, 173}, {92, 165}, {83, 169}, {94, 164}, {86, 172}, {70, 189}, {94, 165}, {67, 189}, {68, 186}, {90, 165} }>;

(II) A more general form is to represent the graph as the orbit of {96, 101} under the group generated by the following permutations:

a: (2, 4)(3, 7)(5, 10)(6, 13)(8, 16)(9, 19)(11, 22)(12, 25)(14, 28)(18, 35)(20, 38)(21, 40)(23, 43)(24, 46)(26, 49)(27, 37)(29, 54)(30, 57)(31, 58)(32, 52)(33, 60)(34, 62)(36, 64)(39, 66)(41, 68)(42, 55)(44, 71)(45, 73)(47, 76)(48, 67)(50, 79)(51, 72)(53, 83)(56, 87)(61, 85)(63, 82)(65, 84)(69, 70)(74, 80)(75, 86)(78, 88)(89, 90)(92, 93)(95, 96)(97, 187)(98, 190)(99, 143)(100, 186)(101, 107)(102, 123)(103, 185)(104, 144)(105, 129)(106, 163)(108, 169)(109, 134)(110, 159)(111, 148)(112, 125)(113, 172)(114, 137)(115, 155)(116, 182)(117, 162)(118, 188)(119, 151)(120, 173)(121, 175)(122, 154)(124, 131)(126, 157)(127, 161)(128, 174)(130, 192)(132, 156)(133, 158)(135, 138)(136, 153)(139, 141)(140, 165)(142, 150)(145, 164)(146, 178)(147, 180)(149, 191)(152, 170)(160, 171)(166, 181)(167, 179)(168, 176)(177, 189)(183, 184)
b: (2, 71, 4, 44)(3, 75, 7, 86)(5, 90, 10, 89)(6, 48, 13, 67)(8, 43, 16, 23)(9, 65, 19, 84)(11, 31, 22, 58)(12, 69, 25, 70)(14, 87, 28, 56)(15, 59)(17, 94)(18, 27, 35, 37)(20, 92, 38, 93)(21, 61, 40, 85)(24, 55, 46, 42)(26, 53, 49, 83)(29, 45, 54, 73)(30, 52, 57, 32)(33, 63, 60, 82)(34, 39, 62, 66)(36, 74, 64, 80)(41, 88, 68, 78)(47, 50, 76, 79)(51, 95, 72, 96)(97, 171, 187, 160)(98, 167, 190, 179)(99, 158, 143, 133)(100, 125, 186, 112)(101, 126, 107, 157)(102, 132, 123, 156)(103, 127, 185, 161)(104, 113, 144, 172)(105, 139, 129, 141)(106, 124, 163, 131)(108, 154, 169, 122)(109, 136, 134, 153)(110, 188, 159, 118)(111, 162, 148, 117)(114, 151, 137, 119)(115, 191, 155, 149)(116, 181, 182, 166)(120, 176, 173, 168)(121, 174, 175, 128)(130, 150, 192, 142)(135, 184, 138, 183)(140, 152, 165, 170)(145, 147, 164, 180)(146, 177, 178, 189)
c: (1, 2, 62, 27, 15, 37, 34, 4)(3, 60, 94, 33, 7, 96, 81, 95)(5, 40, 63, 49, 67, 12, 16, 44)(6, 38, 89, 11, 19, 92, 28, 86)(8, 25, 48, 26, 82, 21, 10, 71)(9, 22, 90, 20, 13, 75, 14, 93)(17, 43, 31, 41, 91, 68, 58, 23)(18, 51, 54, 87, 52, 88, 64, 84)(24, 85, 39, 73, 55, 74, 76, 70)(29, 72, 35, 65, 36, 78, 32, 56)(30, 79, 53, 77, 83, 50, 57, 59)(42, 45, 66, 61, 46, 69, 47, 80)(97, 187, 136, 116, 120, 173, 182, 153)(98, 141, 151, 164, 178, 113, 101, 159)(99, 152, 132, 163, 117, 175, 186, 149)(100, 121, 162, 106, 156, 170, 143, 191)(102, 122, 177, 183, 137, 168, 158, 166)(103, 157, 109, 167, 171, 112, 150, 148)(104, 188, 140, 124, 131, 165, 118, 144)(105, 115, 147, 180, 155, 129, 128, 174)(107, 172, 146, 145, 119, 139, 190, 110)(108, 127, 138, 135, 161, 169, 192, 130)(111, 142, 125, 160, 179, 134, 126, 185)(114, 184, 189, 154, 123, 181, 133, 176)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 167 ]
192
-1 176 168 173 120
-2 114 158 182 173
-3 124 104 172 141
-4 133 137 116 120
-5 133 114 139 152
-6 156 146 104 128
-7 144 113 139 131
-8 102 158 191 164
-9 124 180 98 186
-10 158 137 170 141
-11 124 191 115 139
-12 154 146 181 186
-13 132 144 178 174
-14 188 101 115 117
-15 154 187 122 97
-16 133 123 145 149
-17 147 180 170 152
-18 134 156 178 160
-19 100 190 147 131
-20 128 118 152 164
-21 156 168 183 98
-22 155 149 141 131
-23 99 156 147 115
-24 154 127 160 120
-25 100 122 166 178
-26 122 101 183 162
-27 189 102 97 153
-28 155 107 118 162
-29 99 103 107 109
-30 112 179 192 127
-31 155 191 129 163
-32 190 103 150 186
-33 178 124 118 119
-34 136 181 116 183
-35 132 146 171 109
-36 171 117 150 119
-37 187 177 123 136
-38 188 145 170 174
-39 134 135 181 182
-40 132 176 190 184
-41 100 117 128 129
-42 187 168 103 108
-43 132 143 155 180
-44 99 176 181 119
-45 157 136 158 127
-46 122 171 161 173
-47 192 150 183 153
-48 121 177 102 113
-49 154 117 107 184
-50 135 192 109 142
-51 113 179 126 170
-52 100 185 98 142
-53 135 126 148 108
-54 143 101 134 185
-55 176 169 97 185
-56 110 157 148 149
-57 167 125 161 130
-58 115 105 149 106
-59 169 160 171 108
-60 188 146 151 131
-61 167 102 135 120
-62 166 182 184 153
-63 110 189 114 163
-64 160 151 162 142
-65 112 145 167 163
-66 166 116 138 109
-67 123 189 172 175
-68 105 162 174 186
-69 177 112 169 182
-70 189 125 116 108
-71 143 166 168 151
-72 167 157 172 152
-73 133 126 161 153
-74 187 111 114 192
-75 113 104 105 163
-76 136 184 130 142
-77 103 127 161 185
-78 112 148 139 175
-79 134 138 150 130
-80 137 148 97 130
-81 110 188 159 118
-82 177 137 159 106
-83 111 157 169 138
-84 179 125 106 164
-85 123 179 138 173
-86 144 106 172 129
-87 111 191 126 159
-88 121 111 125 141
-89 143 105 140 119
-90 99 165 129 151
-91 121 128 174 175
-92 110 121 165 180
-93 147 159 140 175
-94 165 145 140 164
-95 144 107 140 98
-96 165 101 190 104
-97 55 80 15 27
-98 95 52 9 21
-99 44 23 90 29
-100 25 19 41 52
-101 14 26 96 54
-102 48 27 61 8
-103 77 29 42 32
-104 3 6 96 75
-105 89 68 58 75
-106 58 82 84 86
-107 49 28 29 95
-108 59 70 42 53
-109 66 35 50 29
-110 56 81 92 63
-111 88 83 74 87
-112 78 69 30 65
-113 48 7 51 75
-114 2 5 63 74
-115 11 23 14 58
-116 66 34 4 70
-117 14 36 49 41
-118 33 81 28 20
-119 33 44 89 36
-120 1 24 4 61
-121 88 91 48 92
-122 46 25 15 26
-123 67 37 16 85
-124 11 33 3 9
-125 88 57 70 84
-126 51 73 53 87
-127 77 45 24 30
-128 91 6 41 20
-129 90 41 31 86
-130 57 79 80 76
-131 22 60 7 19
-132 13 35 40 43
-133 4 5 16 73
-134 79 39 18 54
-135 39 50 61 53
-136 34 45 37 76
-137 80 4 82 10
-138 66 79 83 85
-139 11 78 5 7
-140 89 93 94 95
-141 22 88 3 10
-142 50 52 64 76
-143 89 71 43 54
-144 13 7 95 86
-145 16 38 94 65
-146 12 35 60 6
-147 23 93 17 19
-148 56 78 80 53
-149 22 56 58 16
-150 79 36 47 32
-151 90 60 71 64
-152 5 17 72 20
-153 47 27 62 73
-154 12 24 15 49
-155 22 28 31 43
-156 23 6 18 21
-157 45 56 72 83
-158 45 2 8 10
-159 81 82 93 87
-160 24 59 18 64
-161 77 46 57 73
-162 68 26 28 64
-163 63 31 75 65
-164 94 84 8 20
-165 90 92 94 96
-166 66 25 71 62
-167 57 61 72 65
-168 1 71 42 21
-169 55 69 59 83
-170 38 17 51 10
-171 35 46 36 59
-172 67 3 72 86
-173 1 2 46 85
-174 13 68 91 38
-175 67 78 91 93
-176 44 55 1 40
-177 69 37 48 82
-178 33 13 25 18
-179 51 84 30 85
-180 92 17 9 43
-181 44 12 34 39
-182 2 69 39 62
-183 34 47 26 21
-184 49 40 62 76
-185 55 77 52 54
-186 12 68 9 32
-187 15 37 74 42
-188 14 81 38 60
-189 67 70 27 63
-190 40 19 96 32
-191 11 8 31 87
-192 47 50 30 74
0

**************