[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 192, 169 ] =
BGCG(UG(ATD[96,48]);K1;{8,9}).
(I) Following is a form readable by MAGMA:
g:=Graph<192|{ {96, 119}, {81, 113}, {73, 104}, {84, 117}, {81, 115}, {89, 122},
{67, 103}, {71, 99}, {72, 108}, {74, 111}, {84, 115}, {69, 108}, {92, 117}, {91,
114}, {79, 102}, {82, 123}, {65, 107}, {84, 120}, {94, 114}, {94, 115}, {67,
109}, {88, 118}, {76, 98}, {64, 113}, {75, 122}, {91, 105}, {87, 100}, {77,
121}, {86, 98}, {66, 119}, {70, 112}, {81, 103}, {75, 124}, {87, 111}, {79,
118}, {83, 105}, {73, 114}, {70, 120}, {89, 102}, {33, 97}, {36, 101}, {59,
121}, {59, 120}, {61, 126}, {35, 103}, {44, 104}, {63, 123}, {33, 100}, {44,
105}, {51, 118}, {33, 103}, {37, 99}, {53, 125}, {55, 127}, {55, 125}, {56,
115}, {57, 114}, {38, 106}, {45, 97}, {43, 102}, {47, 98}, {59, 116}, {63, 112},
{44, 124}, {41, 120}, {58, 105}, {37, 112}, {46, 123}, {41, 124}, {32, 118},
{45, 123}, {35, 116}, {49, 102}, {40, 127}, {60, 101}, {62, 100}, {56, 99}, {34,
126}, {49, 109}, {56, 100}, {55, 106}, {48, 110}, {49, 111}, {46, 113}, {52,
107}, {11, 107}, {25, 121}, {12, 109}, {8, 106}, {31, 125}, {10, 104}, {2, 97},
{7, 99}, {30, 122}, {10, 110}, {20, 113}, {22, 127}, {25, 112}, {7, 109}, {16,
124}, {3, 110}, {26, 119}, {10, 101}, {17, 126}, {4, 116}, {26, 106}, {13, 125},
{16, 97}, {29, 111}, {30, 108}, {7, 116}, {31, 108}, {1, 117}, {28, 104}, {13,
121}, {9, 127}, {2, 117}, {18, 101}, {14, 119}, {23, 110}, {1, 122}, {5, 126},
{22, 107}, {28, 98}, {4, 132}, {19, 147}, {57, 185}, {23, 150}, {58, 184}, {63,
189}, {12, 143}, {67, 192}, {29, 153}, {6, 131}, {27, 158}, {47, 169}, {41,
174}, {16, 152}, {28, 149}, {47, 166}, {34, 171}, {52, 189}, {53, 188}, {31,
149}, {33, 171}, {32, 170}, {18, 153}, {35, 168}, {52, 191}, {40, 164}, {57,
181}, {60, 176}, {9, 132}, {40, 165}, {14, 131}, {51, 190}, {53, 184}, {4, 138},
{15, 129}, {14, 128}, {8, 135}, {27, 148}, {21, 154}, {20, 155}, {19, 156}, {62,
177}, {8, 152}, {41, 185}, {5, 148}, {25, 136}, {3, 145}, {21, 135}, {50, 160},
{82, 192}, {4, 151}, {25, 138}, {22, 130}, {35, 183}, {24, 140}, {2, 151}, {5,
144}, {31, 137}, {58, 172}, {6, 145}, {46, 185}, {9, 158}, {63, 168}, {11, 147},
{16, 136}, {53, 173}, {55, 175}, {61, 165}, {13, 148}, {47, 182}, {45, 180},
{10, 144}, {90, 192}, {42, 176}, {20, 143}, {23, 140}, {32, 188}, {34, 191},
{44, 177}, {37, 187}, {6, 153}, {42, 181}, {40, 183}, {13, 146}, {3, 163}, {43,
139}, {39, 135}, {32, 129}, {43, 138}, {34, 131}, {1, 163}, {39, 133}, {38,
132}, {11, 169}, {3, 161}, {49, 147}, {56, 154}, {17, 178}, {37, 134}, {21,
182}, {60, 159}, {17, 181}, {18, 182}, {39, 130}, {54, 147}, {43, 141}, {52,
146}, {59, 157}, {36, 131}, {39, 128}, {61, 154}, {62, 153}, {27, 179}, {8,
161}, {29, 180}, {60, 149}, {15, 165}, {36, 142}, {26, 176}, {21, 191}, {5,
174}, {14, 165}, {2, 174}, {22, 187}, {45, 128}, {42, 135}, {12, 162}, {48,
158}, {20, 186}, {6, 169}, {23, 184}, {51, 156}, {17, 161}, {38, 150}, {58,
138}, {24, 169}, {57, 136}, {62, 143}, {12, 190}, {30, 172}, {15, 189}, {26,
174}, {46, 154}, {38, 146}, {27, 175}, {51, 134}, {50, 132}, {11, 188}, {54,
129}, {18, 170}, {54, 142}, {61, 133}, {48, 137}, {7, 189}, {29, 167}, {24,
162}, {50, 136}, {54, 140}, {1, 186}, {19, 168}, {9, 178}, {15, 179}, {24, 164},
{28, 161}, {48, 141}, {30, 160}, {42, 148}, {19, 172}, {36, 155}, {66, 130},
{95, 159}, {79, 143}, {73, 139}, {78, 141}, {92, 159}, {72, 140}, {89, 157},
{68, 129}, {68, 130}, {94, 152}, {90, 157}, {65, 137}, {76, 133}, {94, 151},
{85, 156}, {74, 134}, {93, 145}, {90, 151}, {69, 139}, {95, 145}, {85, 155},
{95, 144}, {81, 128}, {88, 137}, {96, 178}, {93, 142}, {75, 159}, {82, 134},
{68, 146}, {88, 142}, {72, 158}, {76, 155}, {92, 139}, {69, 157}, {93, 133},
{78, 150}, {77, 150}, {78, 149}, {64, 156}, {83, 141}, {84, 181}, {89, 184},
{85, 180}, {65, 162}, {80, 179}, {85, 177}, {72, 173}, {82, 183}, {64, 166},
{86, 176}, {70, 160}, {74, 172}, {76, 170}, {64, 167}, {79, 168}, {74, 162},
{66, 171}, {70, 175}, {65, 170}, {80, 187}, {71, 171}, {75, 167}, {83, 190},
{92, 177}, {87, 186}, {80, 191}, {96, 144}, {87, 166}, {50, 192}, {95, 173},
{78, 188}, {68, 183}, {71, 180}, {73, 186}, {83, 160}, {66, 182}, {80, 164},
{86, 163}, {90, 175}, {67, 187}, {96, 152}, {91, 163}, {69, 190}, {93, 166},
{86, 173}, {88, 164}, {91, 167}, {71, 185}, {77, 179}, {77, 178} }>;
(II) A more general form is to represent the graph as the orbit of {96, 119}
under the group generated by the following permutations:
a: (1, 2, 4, 7, 12, 20)(3, 5, 9, 15, 24, 36)(6, 10, 17, 27, 40, 54)(8, 13, 22,
32, 47, 60)(11, 18, 28, 42, 55, 68)(14, 23, 34, 48, 61, 72)(16, 25, 37, 51, 64,
75)(19, 29, 44, 57, 70, 82)(21, 31, 39, 53, 66, 78)(26, 38, 52, 65, 76, 86)(30,
45, 58, 71, 83, 46)(33, 43, 56, 69, 81, 89)(35, 49, 62, 73, 84, 90)(41, 50, 63,
74, 85, 91)(59, 67, 79, 87, 92, 94)(77, 80, 88, 93, 95, 96)(97, 138, 99, 190,
113, 122)(98, 176, 106, 146, 107, 170)(100, 139, 115, 157, 103, 102)(101, 161,
148, 127, 129, 169)(104, 181, 175, 183, 147, 153)(105, 185, 160, 123, 172,
180)(108, 128, 184, 171, 141, 154)(109, 143, 186, 117, 151, 116)(110, 126, 158,
165, 140, 131)(111, 177, 114, 120, 192, 168)(112, 134, 156, 167, 124, 136)(118,
166, 159, 152, 121, 187)(119, 150, 191, 137, 133, 173)(125, 130, 188, 182, 149,
135)(132, 189, 162, 155, 163, 174)(142, 145, 144, 178, 179, 164) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 20, 3, 30)(4, 46, 6, 31)(5, 12, 8, 19)(7, 21, 11, 13)(9, 82, 14, 88)(10,
83, 16, 85)(15, 80, 22, 68)(17, 74, 26, 79)(18, 78, 25, 71)(23, 70, 33, 76)(24,
55, 35, 61)(27, 67, 39, 54)(28, 58, 41, 62)(29, 60, 43, 57)(32, 77, 37, 66)(34,
65, 38, 63)(36, 48, 50, 45)(42, 49)(47, 53, 59, 56)(51, 96)(64, 95, 69, 94)(72,
90, 81, 93)(73, 91, 75, 92)(84, 87, 86, 89)(97, 155, 110, 160)(98, 184, 120,
100)(99, 182, 188, 121)(101, 141, 136, 180)(102, 181, 111, 176)(103, 133, 140,
175)(104, 105, 124, 177)(106, 168, 126, 162)(107, 146, 189, 191)(108, 151, 113,
145)(109, 135, 147, 148)(112, 171, 170, 150)(114, 167, 159, 139)(115, 166, 173,
157)(116, 154, 169, 125)(117, 186, 163, 122)(118, 178, 134, 119)(123, 131, 137,
132)(127, 183, 165, 164)(128, 142, 158, 192)(129, 179, 187, 130)(138, 185, 153,
149)(143, 161, 172, 174)(144, 190, 152, 156)
C4[ 192, 169 ]
192
-1 122 117 163 186
-2 117 151 97 174
-3 110 145 161 163
-4 132 116 138 151
-5 144 126 148 174
-6 145 169 131 153
-7 99 189 116 109
-8 135 106 161 152
-9 132 178 158 127
-10 110 144 101 104
-11 188 147 169 107
-12 143 190 162 109
-13 121 146 125 148
-14 165 128 119 131
-15 165 189 179 129
-16 124 136 97 152
-17 178 126 181 161
-18 101 170 182 153
-19 156 168 147 172
-20 143 155 113 186
-21 154 135 191 182
-22 187 127 107 130
-23 110 150 140 184
-24 169 140 162 164
-25 121 112 136 138
-26 176 106 119 174
-27 179 158 148 175
-28 104 149 161 98
-29 111 167 180 153
-30 122 160 172 108
-31 125 137 149 108
-32 188 170 118 129
-33 100 103 171 97
-34 191 126 171 131
-35 168 103 116 183
-36 155 101 131 142
-37 99 187 112 134
-38 132 146 106 150
-39 133 135 128 130
-40 165 127 183 164
-41 124 174 185 120
-42 176 135 148 181
-43 102 138 139 141
-44 177 124 104 105
-45 123 180 128 97
-46 154 123 113 185
-47 166 169 182 98
-48 110 158 137 141
-49 111 102 147 109
-50 132 136 192 160
-51 134 156 190 118
-52 189 146 191 107
-53 188 125 173 184
-54 147 129 140 142
-55 125 127 106 175
-56 99 154 100 115
-57 114 136 181 185
-58 105 138 172 184
-59 121 157 116 120
-60 176 101 159 149
-61 154 165 133 126
-62 143 100 177 153
-63 112 123 189 168
-64 166 156 167 113
-65 137 170 107 162
-66 171 182 119 130
-67 187 103 192 109
-68 146 183 129 130
-69 157 190 139 108
-70 112 160 120 175
-71 99 180 171 185
-72 158 140 173 108
-73 114 104 139 186
-74 111 134 172 162
-75 122 167 124 159
-76 133 155 170 98
-77 121 178 179 150
-78 188 149 150 141
-79 143 102 168 118
-80 187 179 191 164
-81 113 103 115 128
-82 123 134 192 183
-83 190 105 160 141
-84 115 181 117 120
-85 155 177 156 180
-86 176 173 163 98
-87 100 111 166 186
-88 137 118 142 164
-89 122 102 157 184
-90 157 192 151 175
-91 167 114 105 163
-92 177 159 117 139
-93 133 166 145 142
-94 114 115 151 152
-95 144 145 159 173
-96 144 178 119 152
-97 33 45 2 16
-98 47 28 86 76
-99 56 37 71 7
-100 33 56 62 87
-101 36 60 18 10
-102 89 79 49 43
-103 33 67 35 81
-104 44 28 73 10
-105 44 58 91 83
-106 55 26 38 8
-107 11 22 52 65
-108 69 72 30 31
-109 12 67 49 7
-110 23 3 48 10
-111 49 29 74 87
-112 25 37 70 63
-113 46 81 20 64
-114 57 91 94 73
-115 56 81 94 84
-116 35 4 59 7
-117 1 2 92 84
-118 88 79 51 32
-119 66 14 26 96
-120 59 70 84 41
-121 77 13 25 59
-122 1 89 30 75
-123 45 46 82 63
-124 44 16 41 75
-125 55 13 31 53
-126 34 5 17 61
-127 22 55 40 9
-128 45 14 81 39
-129 68 15 32 54
-130 22 66 68 39
-131 34 14 36 6
-132 4 38 50 9
-133 93 39 61 76
-134 37 82 51 74
-135 39 8 42 21
-136 57 25 16 50
-137 88 48 31 65
-138 25 58 4 43
-139 69 92 73 43
-140 23 24 72 54
-141 78 48 83 43
-142 88 36 93 54
-143 12 79 62 20
-144 5 95 96 10
-145 3 93 6 95
-146 13 68 38 52
-147 11 49 19 54
-148 13 5 27 42
-149 78 60 28 31
-150 77 23 78 38
-151 2 90 4 94
-152 16 94 8 96
-153 6 18 29 62
-154 56 46 61 21
-155 36 85 20 76
-156 51 19 85 64
-157 89 90 69 59
-158 48 27 72 9
-159 92 60 95 75
-160 70 50 83 30
-161 3 17 28 8
-162 12 24 74 65
-163 1 3 91 86
-164 88 24 80 40
-165 14 15 61 40
-166 47 93 64 87
-167 91 29 64 75
-168 35 79 19 63
-169 11 24 47 6
-170 18 32 65 76
-171 33 66 34 71
-172 58 19 30 74
-173 72 95 53 86
-174 2 26 5 41
-175 55 90 70 27
-176 26 60 42 86
-177 44 92 62 85
-178 77 17 96 9
-179 77 80 15 27
-180 45 71 29 85
-181 57 17 84 42
-182 66 47 18 21
-183 35 68 82 40
-184 23 89 58 53
-185 46 57 71 41
-186 1 73 20 87
-187 22 67 80 37
-188 11 78 53 32
-189 15 7 52 63
-190 12 69 83 51
-191 34 80 52 21
-192 67 90 82 50
0