C4graphGraph forms for C4 [ 195, 2 ] = C_195(1,64)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 195, 2 ] = C_195(1,64).

(I) Following is a form readable by MAGMA:

g:=Graph<195|{ {2, 3}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {1, 2}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {141, 142}, {137, 138}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {3, 4}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {139, 140}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {7, 8}, {183, 184}, {167, 168}, {151, 152}, {135, 136}, {55, 56}, {39, 40}, {23, 24}, {71, 72}, {87, 88}, {103, 104}, {119, 120}, {15, 16}, {175, 176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {31, 32}, {159, 160}, {95, 96}, {1, 65}, {63, 127}, {62, 126}, {61, 125}, {60, 124}, {59, 123}, {58, 122}, {57, 121}, {56, 120}, {55, 119}, {54, 118}, {53, 117}, {52, 116}, {51, 115}, {50, 114}, {49, 113}, {48, 112}, {47, 111}, {46, 110}, {45, 109}, {44, 108}, {43, 107}, {42, 106}, {41, 105}, {40, 104}, {39, 103}, {2, 66}, {3, 67}, {4, 68}, {5, 69}, {6, 70}, {7, 71}, {8, 72}, {9, 73}, {10, 74}, {11, 75}, {12, 76}, {13, 77}, {14, 78}, {15, 79}, {16, 80}, {17, 81}, {18, 82}, {19, 83}, {20, 84}, {21, 85}, {22, 86}, {23, 87}, {24, 88}, {25, 89}, {26, 90}, {27, 91}, {28, 92}, {29, 93}, {30, 94}, {31, 95}, {32, 96}, {33, 97}, {34, 98}, {35, 99}, {36, 100}, {37, 101}, {38, 102}, {128, 192}, {129, 193}, {130, 194}, {131, 195}, {63, 64}, {191, 192}, {4, 135}, {64, 195}, {60, 191}, {56, 187}, {52, 183}, {48, 179}, {44, 175}, {40, 171}, {8, 139}, {12, 143}, {16, 147}, {20, 151}, {24, 155}, {28, 159}, {32, 163}, {36, 167}, {1, 132}, {59, 190}, {57, 188}, {51, 182}, {49, 180}, {43, 174}, {41, 172}, {3, 134}, {9, 140}, {11, 142}, {17, 148}, {19, 150}, {25, 156}, {27, 158}, {33, 164}, {35, 166}, {2, 133}, {58, 189}, {50, 181}, {42, 173}, {10, 141}, {18, 149}, {26, 157}, {34, 165}, {5, 136}, {55, 186}, {53, 184}, {39, 170}, {7, 138}, {21, 152}, {23, 154}, {37, 168}, {6, 137}, {54, 185}, {22, 153}, {38, 169}, {13, 144}, {47, 178}, {45, 176}, {15, 146}, {14, 145}, {46, 177}, {29, 160}, {31, 162}, {30, 161}, {64, 128}, {65, 129}, {66, 130}, {67, 131}, {68, 132}, {69, 133}, {70, 134}, {71, 135}, {72, 136}, {73, 137}, {74, 138}, {75, 139}, {76, 140}, {77, 141}, {78, 142}, {79, 143}, {80, 144}, {81, 145}, {82, 146}, {83, 147}, {84, 148}, {85, 149}, {86, 150}, {87, 151}, {88, 152}, {89, 153}, {90, 154}, {91, 155}, {92, 156}, {93, 157}, {94, 158}, {95, 159}, {96, 160}, {97, 161}, {98, 162}, {99, 163}, {100, 164}, {101, 165}, {102, 166}, {103, 167}, {104, 168}, {105, 169}, {106, 170}, {107, 171}, {108, 172}, {109, 173}, {110, 174}, {111, 175}, {112, 176}, {113, 177}, {114, 178}, {115, 179}, {116, 180}, {117, 181}, {118, 182}, {119, 183}, {120, 184}, {121, 185}, {122, 186}, {123, 187}, {124, 188}, {125, 189}, {126, 190}, {127, 191}, {1, 195}, {61, 192}, {63, 194}, {62, 193}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 65)(3, 129)(4, 193)(5, 62)(6, 126)(7, 190)(8, 59)(9, 123)(10, 187)(11, 56)(12, 120)(13, 184)(14, 53)(15, 117)(16, 181)(17, 50)(18, 114)(19, 178)(20, 47)(21, 111)(22, 175)(23, 44)(24, 108)(25, 172)(26, 41)(27, 105)(28, 169)(29, 38)(30, 102)(31, 166)(32, 35)(33, 99)(34, 163)(36, 96)(37, 160)(39, 93)(40, 157)(42, 90)(43, 154)(45, 87)(46, 151)(48, 84)(49, 148)(51, 81)(52, 145)(54, 78)(55, 142)(57, 75)(58, 139)(60, 72)(61, 136)(63, 69)(64, 133)(67, 130)(68, 194)(70, 127)(71, 191)(73, 124)(74, 188)(76, 121)(77, 185)(79, 118)(80, 182)(82, 115)(83, 179)(85, 112)(86, 176)(88, 109)(89, 173)(91, 106)(92, 170)(94, 103)(95, 167)(97, 100)(98, 164)(101, 161)(104, 158)(107, 155)(110, 152)(113, 149)(116, 146)(119, 143)(122, 140)(125, 137)(128, 134)(132, 195)(135, 192)(138, 189)(141, 186)(144, 183)(147, 180)(150, 177)(153, 174)(156, 171)(159, 168)(162, 165)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195)
c: (2, 132)(3, 68)(5, 135)(6, 71)(8, 138)(9, 74)(11, 141)(12, 77)(14, 144)(15, 80)(17, 147)(18, 83)(20, 150)(21, 86)(23, 153)(24, 89)(26, 156)(27, 92)(29, 159)(30, 95)(32, 162)(33, 98)(35, 165)(36, 101)(38, 168)(39, 104)(41, 171)(42, 107)(44, 174)(45, 110)(47, 177)(48, 113)(50, 180)(51, 116)(53, 183)(54, 119)(56, 186)(57, 122)(59, 189)(60, 125)(62, 192)(63, 128)(65, 195)(66, 131)(69, 134)(72, 137)(75, 140)(78, 143)(81, 146)(84, 149)(87, 152)(90, 155)(93, 158)(96, 161)(99, 164)(102, 167)(105, 170)(108, 173)(111, 176)(114, 179)(117, 182)(120, 185)(123, 188)(126, 191)(129, 194)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 195, 2 ]
195
-1 132 2 195 65
-2 66 1 133 3
-3 67 2 134 4
-4 68 3 135 5
-5 69 4 136 6
-6 70 5 137 7
-7 71 6 138 8
-8 72 7 139 9
-9 73 8 140 10
-10 11 74 9 141
-11 12 75 10 142
-12 11 143 13 76
-13 77 12 144 14
-14 78 13 145 15
-15 79 14 146 16
-16 80 15 147 17
-17 81 16 148 18
-18 82 17 149 19
-19 83 18 150 20
-20 84 19 151 21
-21 22 85 20 152
-22 23 86 21 153
-23 22 154 24 87
-24 88 23 155 25
-25 89 24 156 26
-26 90 25 157 27
-27 91 26 158 28
-28 92 27 159 29
-29 93 28 160 30
-30 94 29 161 31
-31 95 30 162 32
-32 33 96 31 163
-33 34 97 32 164
-34 33 165 35 98
-35 99 34 166 36
-36 100 35 167 37
-37 101 36 168 38
-38 102 37 169 39
-39 103 38 170 40
-40 104 39 171 41
-41 105 40 172 42
-42 106 41 173 43
-43 44 107 42 174
-44 45 108 43 175
-45 44 176 46 109
-46 110 45 177 47
-47 111 46 178 48
-48 112 47 179 49
-49 113 48 180 50
-50 114 49 181 51
-51 115 50 182 52
-52 116 51 183 53
-53 117 52 184 54
-54 55 118 53 185
-55 56 119 54 186
-56 55 187 57 120
-57 121 56 188 58
-58 122 57 189 59
-59 123 58 190 60
-60 124 59 191 61
-61 125 60 192 62
-62 126 61 193 63
-63 127 62 194 64
-64 128 63 195 65
-65 66 1 129 64
-66 67 2 130 65
-67 66 68 3 131
-68 132 67 69 4
-69 133 68 70 5
-70 134 69 71 6
-71 135 70 72 7
-72 136 71 73 8
-73 137 72 74 9
-74 138 73 75 10
-75 11 139 74 76
-76 77 12 140 75
-77 78 13 141 76
-78 77 79 14 142
-79 143 78 80 15
-80 144 79 81 16
-81 145 80 82 17
-82 146 81 83 18
-83 147 82 84 19
-84 148 83 85 20
-85 149 84 86 21
-86 22 150 85 87
-87 88 23 151 86
-88 89 24 152 87
-89 88 90 25 153
-90 154 89 91 26
-91 155 90 92 27
-92 156 91 93 28
-93 157 92 94 29
-94 158 93 95 30
-95 159 94 96 31
-96 160 95 97 32
-97 33 161 96 98
-98 99 34 162 97
-99 100 35 163 98
-100 99 101 36 164
-101 165 100 102 37
-102 166 101 103 38
-103 167 102 104 39
-104 168 103 105 40
-105 169 104 106 41
-106 170 105 107 42
-107 171 106 108 43
-108 44 172 107 109
-109 110 45 173 108
-110 111 46 174 109
-111 110 112 47 175
-112 176 111 113 48
-113 177 112 114 49
-114 178 113 115 50
-115 179 114 116 51
-116 180 115 117 52
-117 181 116 118 53
-118 182 117 119 54
-119 55 183 118 120
-120 121 56 184 119
-121 122 57 185 120
-122 121 123 58 186
-123 187 122 124 59
-124 188 123 125 60
-125 189 124 126 61
-126 190 125 127 62
-127 191 126 128 63
-128 192 127 129 64
-129 193 128 130 65
-130 66 194 129 131
-131 132 67 195 130
-132 1 133 68 131
-133 132 2 134 69
-134 133 3 135 70
-135 134 4 136 71
-136 135 5 137 72
-137 136 6 138 73
-138 137 7 139 74
-139 138 8 140 75
-140 139 9 141 76
-141 77 140 10 142
-142 11 143 78 141
-143 12 144 79 142
-144 143 13 145 80
-145 144 14 146 81
-146 145 15 147 82
-147 146 16 148 83
-148 147 17 149 84
-149 148 18 150 85
-150 149 19 151 86
-151 150 20 152 87
-152 88 151 21 153
-153 22 154 89 152
-154 23 155 90 153
-155 154 24 156 91
-156 155 25 157 92
-157 156 26 158 93
-158 157 27 159 94
-159 158 28 160 95
-160 159 29 161 96
-161 160 30 162 97
-162 161 31 163 98
-163 99 162 32 164
-164 33 165 100 163
-165 34 166 101 164
-166 165 35 167 102
-167 166 36 168 103
-168 167 37 169 104
-169 168 38 170 105
-170 169 39 171 106
-171 170 40 172 107
-172 171 41 173 108
-173 172 42 174 109
-174 110 173 43 175
-175 44 176 111 174
-176 45 177 112 175
-177 176 46 178 113
-178 177 47 179 114
-179 178 48 180 115
-180 179 49 181 116
-181 180 50 182 117
-182 181 51 183 118
-183 182 52 184 119
-184 183 53 185 120
-185 121 184 54 186
-186 55 187 122 185
-187 56 188 123 186
-188 187 57 189 124
-189 188 58 190 125
-190 189 59 191 126
-191 190 60 192 127
-192 191 61 193 128
-193 192 62 194 129
-194 193 63 195 130
-195 1 194 64 131
0

**************