[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 196, 7 ] =
BGCG({4,4}_7,7;K1;{1,3,4,5}).
(I) Following is a form readable by MAGMA:
g:=Graph<196|{ {98, 107}, {96, 120}, {75, 107}, {72, 105}, {65, 99}, {87, 117},
{81, 115}, {80, 115}, {91, 120}, {86, 117}, {77, 105}, {70, 99}, {74, 108}, {79,
104}, {69, 108}, {88, 114}, {79, 99}, {91, 119}, {90, 119}, {93, 114}, {87,
103}, {70, 119}, {69, 119}, {95, 109}, {91, 105}, {89, 107}, {94, 109}, {65,
117}, {66, 117}, {84, 99}, {67, 123}, {74, 114}, {80, 104}, {82, 106}, {66,
123}, {70, 127}, {81, 106}, {79, 114}, {68, 122}, {83, 108}, {88, 103}, {86,
105}, {84, 107}, {52, 116}, {59, 122}, {63, 126}, {61, 127}, {44, 104}, {46,
106}, {52, 112}, {58, 126}, {33, 100}, {47, 106}, {45, 104}, {42, 111}, {56,
125}, {32, 102}, {41, 111}, {51, 116}, {56, 127}, {46, 102}, {54, 122}, {42,
100}, {50, 124}, {51, 125}, {41, 102}, {49, 126}, {41, 121}, {47, 127}, {60,
108}, {63, 111}, {33, 112}, {45, 124}, {55, 102}, {60, 109}, {62, 111}, {44,
126}, {38, 112}, {59, 109}, {42, 125}, {45, 122}, {36, 124}, {41, 113}, {37,
125}, {40, 113}, {32, 123}, {36, 121}, {47, 112}, {23, 118}, {27, 121}, {13,
110}, {31, 124}, {16, 116}, {31, 123}, {17, 116}, {3, 101}, {4, 110}, {28, 118},
{8, 101}, {22, 121}, {22, 101}, {5, 113}, {17, 101}, {18, 103}, {27, 110}, {14,
120}, {17, 103}, {6, 113}, {19, 100}, {11, 115}, {28, 100}, {14, 118}, {10,
115}, {18, 110}, {5, 120}, {9, 118}, {8, 136}, {38, 166}, {29, 157}, {53, 181},
{2, 131}, {39, 166}, {9, 136}, {52, 181}, {7, 133}, {58, 184}, {30, 157}, {21,
145}, {56, 188}, {62, 186}, {15, 137}, {39, 161}, {34, 164}, {2, 133}, {42,
173}, {35, 164}, {22, 145}, {61, 186}, {71, 192}, {11, 131}, {49, 185}, {27,
147}, {26, 146}, {18, 154}, {72, 192}, {27, 146}, {40, 161}, {55, 190}, {63,
182}, {13, 134}, {43, 160}, {55, 188}, {6, 138}, {50, 190}, {44, 160}, {26,
150}, {25, 149}, {2, 143}, {24, 149}, {23, 154}, {7, 138}, {57, 180}, {61, 176},
{1, 143}, {30, 144}, {8, 134}, {58, 180}, {25, 150}, {31, 144}, {28, 147}, {54,
185}, {39, 183}, {29, 140}, {40, 185}, {34, 179}, {33, 179}, {49, 163}, {16,
131}, {87, 196}, {48, 163}, {13, 153}, {12, 153}, {34, 183}, {28, 137}, {59,
174}, {3, 155}, {92, 196}, {2, 155}, {38, 191}, {30, 135}, {9, 144}, {10, 144},
{35, 185}, {25, 131}, {12, 151}, {89, 194}, {11, 151}, {94, 194}, {61, 161},
{60, 161}, {19, 141}, {18, 141}, {39, 135}, {46, 142}, {63, 159}, {4, 165}, {4,
166}, {48, 146}, {29, 191}, {16, 178}, {5, 167}, {58, 152}, {20, 183}, {59,
152}, {3, 166}, {15, 170}, {8, 173}, {57, 156}, {4, 162}, {5, 162}, {43, 140},
{24, 191}, {12, 171}, {57, 158}, {20, 188}, {52, 156}, {13, 164}, {21, 188}, {7,
173}, {37, 143}, {14, 164}, {1, 170}, {44, 135}, {36, 143}, {6, 170}, {9, 165},
{7, 171}, {56, 148}, {10, 167}, {25, 183}, {34, 140}, {15, 191}, {29, 173}, {24,
169}, {26, 171}, {48, 130}, {53, 135}, {57, 139}, {60, 142}, {14, 189}, {19,
167}, {62, 139}, {22, 160}, {33, 151}, {55, 129}, {6, 177}, {43, 156}, {32,
151}, {23, 160}, {53, 130}, {54, 129}, {20, 172}, {49, 137}, {45, 149}, {53,
141}, {11, 177}, {36, 158}, {32, 154}, {46, 149}, {50, 137}, {54, 141}, {1,
189}, {48, 140}, {62, 130}, {15, 178}, {47, 146}, {37, 152}, {35, 158}, {51,
142}, {20, 170}, {38, 152}, {23, 169}, {21, 171}, {19, 172}, {43, 148}, {37,
154}, {24, 167}, {3, 194}, {67, 130}, {71, 132}, {1, 196}, {76, 138}, {78, 136},
{76, 139}, {77, 138}, {79, 136}, {95, 150}, {75, 129}, {91, 145}, {85, 159},
{83, 153}, {82, 153}, {71, 139}, {76, 128}, {76, 129}, {92, 145}, {10, 196},
{12, 194}, {65, 142}, {96, 175}, {17, 193}, {97, 177}, {81, 128}, {85, 132},
{73, 155}, {16, 195}, {72, 155}, {85, 134}, {80, 132}, {21, 195}, {70, 158},
{93, 133}, {77, 148}, {78, 148}, {97, 187}, {96, 186}, {94, 132}, {90, 128},
{26, 193}, {97, 186}, {65, 157}, {90, 134}, {30, 195}, {64, 157}, {31, 193},
{66, 156}, {64, 159}, {95, 128}, {35, 195}, {78, 174}, {80, 176}, {82, 182},
{86, 178}, {73, 175}, {73, 174}, {98, 133}, {92, 187}, {85, 178}, {74, 162},
{92, 180}, {83, 187}, {40, 193}, {93, 180}, {88, 177}, {75, 162}, {81, 184},
{84, 189}, {67, 168}, {68, 168}, {64, 174}, {72, 184}, {88, 168}, {83, 163},
{89, 168}, {98, 147}, {50, 192}, {97, 147}, {66, 176}, {68, 182}, {51, 192},
{86, 165}, {93, 169}, {78, 187}, {89, 172}, {69, 179}, {96, 150}, {90, 172},
{68, 179}, {94, 169}, {84, 163}, {87, 175}, {71, 189}, {95, 165}, {67, 184},
{69, 190}, {75, 176}, {77, 182}, {73, 181}, {82, 175}, {98, 159}, {64, 190},
{74, 181} }>;
(II) A more general form is to represent the graph as the orbit of {98, 107}
under the group generated by the following permutations:
a: (1, 2, 93, 94, 80, 81, 67, 68, 54, 55, 41, 42, 28, 15)(3, 79, 95, 66, 82, 53,
69, 40, 56, 27, 29, 14, 16, 92)(4, 65, 96, 52, 83, 39, 70, 26, 43, 13, 30, 91,
17, 78)(5, 51, 97, 38, 84, 25, 57, 12, 44, 90, 31, 77, 18, 64)(6, 37, 98, 24,
71, 11, 58, 89, 45, 76, 32, 63, 19, 50)(7, 23, 85, 10, 72, 88, 59, 75, 46, 62,
33, 49, 20, 36)(8, 9, 86, 87, 73, 74, 60, 61, 47, 48, 34, 35, 21, 22)(99, 150,
156, 153, 135, 119, 193, 148, 110, 157, 120, 116, 187, 166)(100, 137, 170, 143,
133, 169, 132, 115, 184, 168, 122, 129, 102, 111)(101, 136, 165, 117, 175, 181,
108, 161, 127, 146, 140, 164, 195, 145)(103, 174, 162, 142, 186, 112, 163, 183,
158, 171, 160, 134, 144, 105)(104, 128, 123, 182, 141, 190, 113, 125, 147, 191,
189, 131, 180, 194)(106, 130, 179, 185, 188, 121, 173, 118, 178, 196, 155, 114,
109, 176)(107, 149, 139, 151, 126, 172, 124, 138, 154, 159, 167, 192, 177,
152) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 92, 14, 15)(3, 78, 13, 29)(4, 64, 12, 43)(5, 50, 11, 57)(6, 36, 10,
71)(7, 22, 9, 85)(16, 93, 91, 28)(17, 79, 90, 42)(18, 65, 89, 56)(19, 51, 88,
70)(20, 37, 87, 84)(21, 23, 86, 98)(24, 72, 97, 35)(25, 58, 96, 49)(26, 44, 95,
63)(27, 30, 94, 77)(31, 80, 76, 41)(32, 66, 75, 55)(33, 52, 74, 69)(34, 38, 73,
83)(39, 59, 82, 48)(40, 45, 81, 62)(46, 67, 61, 54)(47, 53, 60, 68)(99, 172,
125, 103)(100, 116, 114, 119)(101, 136, 134, 173)(102, 123, 176, 129)(104, 128,
111, 193)(105, 147, 195, 169)(106, 130, 161, 122)(107, 188, 154, 117)(108, 179,
112, 181)(109, 182, 146, 135)(110, 157, 194, 148)(113, 124, 115, 139)(118, 178,
133, 145)(120, 137, 131, 180)(121, 144, 132, 138)(126, 150)(127, 141, 142,
168)(140, 166, 174, 153)(143, 196, 189, 170)(149, 184, 186, 185)(151, 156, 162,
190)(152, 175, 163, 183)(155, 187, 164, 191)(158, 167, 192, 177)(159, 171, 160,
165)
C4[ 196, 7 ]
196
-1 143 189 170 196
-2 143 133 155 131
-3 155 166 101 194
-4 110 165 166 162
-5 167 113 162 120
-6 177 113 170 138
-7 133 138 171 173
-8 101 134 136 173
-9 165 144 136 118
-10 144 167 115 196
-11 177 115 151 131
-12 171 194 151 153
-13 110 134 153 164
-14 189 118 120 164
-15 178 191 137 170
-16 178 116 195 131
-17 101 103 116 193
-18 110 154 103 141
-19 100 167 172 141
-20 188 170 172 183
-21 188 145 171 195
-22 121 101 145 160
-23 154 169 160 118
-24 167 169 191 149
-25 149 150 183 131
-26 146 171 193 150
-27 110 121 146 147
-28 100 147 137 118
-29 157 191 140 173
-30 144 135 157 195
-31 144 123 124 193
-32 154 123 102 151
-33 100 112 179 151
-34 179 183 140 164
-35 158 195 185 164
-36 121 143 124 158
-37 143 154 125 152
-38 166 112 191 152
-39 166 135 161 183
-40 113 193 161 185
-41 121 111 102 113
-42 100 111 125 173
-43 156 148 160 140
-44 135 104 126 160
-45 122 124 104 149
-46 102 149 106 142
-47 112 146 127 106
-48 146 140 130 163
-49 126 137 163 185
-50 124 190 137 192
-51 125 192 116 142
-52 112 156 181 116
-53 135 181 130 141
-54 122 129 141 185
-55 188 102 190 129
-56 188 125 148 127
-57 156 158 180 139
-58 180 126 184 152
-59 122 152 174 109
-60 161 108 109 142
-61 176 127 161 186
-62 111 139 130 186
-63 111 126 159 182
-64 157 190 159 174
-65 99 157 117 142
-66 176 123 156 117
-67 123 168 184 130
-68 122 168 179 182
-69 179 190 108 119
-70 99 158 127 119
-71 132 189 192 139
-72 155 192 105 184
-73 155 181 174 175
-74 114 181 162 108
-75 176 107 129 162
-76 138 128 139 129
-77 148 105 138 182
-78 187 136 148 174
-79 99 114 136 104
-80 132 176 104 115
-81 115 106 128 184
-82 182 106 153 175
-83 187 108 163 153
-84 99 189 107 163
-85 132 134 178 159
-86 165 178 105 117
-87 103 117 196 175
-88 177 168 103 114
-89 168 172 194 107
-90 134 128 172 119
-91 145 105 119 120
-92 187 145 180 196
-93 133 114 169 180
-94 132 169 194 109
-95 165 128 150 109
-96 150 120 175 186
-97 187 177 147 186
-98 133 147 159 107
-99 79 70 84 65
-100 33 28 19 42
-101 22 3 17 8
-102 55 46 41 32
-103 88 17 18 87
-104 44 45 79 80
-105 77 91 72 86
-106 46 47 81 82
-107 89 84 75 98
-108 69 60 83 74
-109 59 60 94 95
-110 13 4 27 18
-111 62 41 63 42
-112 33 47 38 52
-113 5 6 40 41
-114 88 79 93 74
-115 11 80 81 10
-116 16 17 51 52
-117 66 86 65 87
-118 23 14 28 9
-119 90 69 91 70
-120 14 91 5 96
-121 22 36 27 41
-122 45 68 59 54
-123 66 67 31 32
-124 45 36 50 31
-125 56 37 51 42
-126 44 58 49 63
-127 56 47 70 61
-128 90 81 95 76
-129 55 75 54 76
-130 67 48 62 53
-131 11 2 25 16
-132 80 71 94 85
-133 2 93 7 98
-134 13 90 8 85
-135 44 39 30 53
-136 78 79 8 9
-137 15 49 28 50
-138 77 6 7 76
-139 57 71 62 76
-140 34 48 29 43
-141 18 19 53 54
-142 46 60 51 65
-143 1 2 36 37
-144 30 9 31 10
-145 22 91 92 21
-146 47 26 48 27
-147 27 28 97 98
-148 77 56 78 43
-149 45 24 46 25
-150 25 26 95 96
-151 11 33 12 32
-152 58 37 59 38
-153 12 13 82 83
-154 23 37 18 32
-155 2 3 72 73
-156 66 57 52 43
-157 29 30 64 65
-158 35 57 36 70
-159 63 85 64 98
-160 22 44 23 43
-161 60 39 61 40
-162 4 5 74 75
-163 48 49 83 84
-164 34 13 35 14
-165 4 95 9 86
-166 3 4 38 39
-167 24 5 19 10
-168 88 67 89 68
-169 23 24 93 94
-170 1 15 6 20
-171 12 26 7 21
-172 89 90 19 20
-173 7 29 8 42
-174 78 59 73 64
-175 82 73 96 87
-176 66 80 61 75
-177 11 88 6 97
-178 15 16 85 86
-179 33 34 68 69
-180 57 58 92 93
-181 73 52 74 53
-182 77 68 82 63
-183 34 25 39 20
-184 67 58 81 72
-185 35 49 40 54
-186 61 62 96 97
-187 78 92 83 97
-188 55 56 20 21
-189 1 14 71 84
-190 55 69 50 64
-191 24 15 38 29
-192 71 50 72 51
-193 26 17 40 31
-194 12 89 3 94
-195 35 16 30 21
-196 1 92 10 87
0