C4graphGraph forms for C4 [ 198, 1 ] = W(99,2)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 198, 1 ] = W(99,2).

(I) Following is a form readable by MAGMA:

g:=Graph<198|{ {2, 3}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {142, 143}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {1, 2}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {3, 4}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {67, 68}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {7, 8}, {183, 184}, {167, 168}, {151, 152}, {55, 56}, {23, 24}, {39, 40}, {71, 72}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {15, 16}, {175, 176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {31, 32}, {159, 160}, {95, 96}, {1, 99}, {4, 102}, {5, 103}, {8, 106}, {9, 107}, {12, 110}, {13, 111}, {16, 114}, {17, 115}, {20, 118}, {21, 119}, {24, 122}, {25, 123}, {28, 126}, {29, 127}, {1, 101}, {2, 102}, {3, 103}, {8, 108}, {9, 109}, {10, 110}, {11, 111}, {16, 116}, {17, 117}, {18, 118}, {19, 119}, {24, 124}, {25, 125}, {26, 126}, {27, 127}, {2, 100}, {3, 101}, {10, 108}, {11, 109}, {18, 116}, {19, 117}, {26, 124}, {27, 125}, {4, 104}, {5, 105}, {6, 106}, {7, 107}, {20, 120}, {21, 121}, {22, 122}, {23, 123}, {6, 104}, {7, 105}, {22, 120}, {23, 121}, {12, 112}, {13, 113}, {14, 114}, {15, 115}, {14, 112}, {15, 113}, {63, 64}, {191, 192}, {28, 128}, {63, 163}, {62, 162}, {61, 161}, {60, 160}, {29, 129}, {30, 130}, {31, 131}, {92, 192}, {93, 193}, {94, 194}, {95, 195}, {30, 128}, {63, 161}, {62, 160}, {31, 129}, {94, 192}, {95, 193}, {32, 130}, {61, 159}, {60, 158}, {57, 155}, {56, 154}, {53, 151}, {52, 150}, {49, 147}, {48, 146}, {45, 143}, {44, 142}, {41, 139}, {40, 138}, {33, 131}, {36, 134}, {37, 135}, {96, 194}, {97, 195}, {100, 198}, {32, 132}, {59, 159}, {58, 158}, {57, 157}, {56, 156}, {51, 151}, {50, 150}, {49, 149}, {48, 148}, {43, 143}, {42, 142}, {41, 141}, {40, 140}, {33, 133}, {34, 134}, {35, 135}, {96, 196}, {97, 197}, {98, 198}, {34, 132}, {59, 157}, {58, 156}, {51, 149}, {50, 148}, {43, 141}, {42, 140}, {35, 133}, {98, 196}, {99, 197}, {36, 136}, {55, 155}, {54, 154}, {53, 153}, {52, 152}, {37, 137}, {38, 138}, {39, 139}, {38, 136}, {55, 153}, {54, 152}, {39, 137}, {44, 144}, {47, 147}, {46, 146}, {45, 145}, {46, 144}, {47, 145}, {1, 198}, {64, 162}, {65, 163}, {68, 166}, {69, 167}, {72, 170}, {73, 171}, {76, 174}, {77, 175}, {80, 178}, {81, 179}, {84, 182}, {85, 183}, {88, 186}, {89, 187}, {92, 190}, {93, 191}, {64, 164}, {67, 167}, {66, 166}, {65, 165}, {72, 172}, {73, 173}, {74, 174}, {75, 175}, {80, 180}, {81, 181}, {82, 182}, {83, 183}, {88, 188}, {89, 189}, {90, 190}, {91, 191}, {66, 164}, {67, 165}, {74, 172}, {75, 173}, {82, 180}, {83, 181}, {90, 188}, {91, 189}, {68, 168}, {69, 169}, {70, 170}, {71, 171}, {84, 184}, {85, 185}, {86, 186}, {87, 187}, {70, 168}, {71, 169}, {86, 184}, {87, 185}, {76, 176}, {77, 177}, {78, 178}, {79, 179}, {78, 176}, {79, 177}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (66, 165)
b: (28, 127)
c: (65, 164)
d: (50, 149)
e: (45, 144)
f: (94, 193)
g: (32, 131)
h: (60, 159)
m: (51, 150)
n1: (86, 185)
a1: (3, 102)
b1: (64, 163)
c1: (23, 122)
d1: (71, 170)
e1: (38, 137)
f1: (76, 175)
g1: (42, 141)
h1: (78, 177)
m1: (74, 173)
n2: (79, 178)
a2: (15, 114)
b2: (96, 195)
c2: (30, 129)
d2: (44, 143)
e2: (52, 151)
f2: (67, 166)
g2: (4, 103)
h2: (85, 184)
m2: (92, 191)
n3: (91, 190)
a3: (35, 134)
b3: (97, 196)
c3: (7, 106)
d3: (33, 132)
e3: (62, 161)
f3: (61, 160)
g3: (16, 115)
h3: (18, 117)
m3: (56, 155)
n4: (8, 107)
a4: (81, 180)
b4: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99)(100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198)
c4: (63, 162)
d4: (53, 152)
e4: (73, 172)
f4: (24, 123)
g4: (34, 133)
h4: (82, 181)
m4: (40, 139)
n5: (69, 168)
a5: (12, 111)
b5: (25, 124)
c5: (54, 153)
d5: (10, 109)
e5: (13, 112)
f5: (17, 116)
g5: (55, 154)
h5: (11, 110)
m5: (58, 157)
n6: (21, 120)
a6: (84, 183)
b6: (75, 174)
c6: (2, 101)
d6: (5, 104)
e6: (83, 182)
f6: (41, 140)
g6: (47, 146)
h6: (31, 130)
m6: (72, 171)
n7: (77, 176)
a7: (98, 197)
b7: (70, 169)
c7: (36, 135)
d7: (27, 126)
e7: (93, 192)
f7: (88, 187)
g7: (37, 136)
h7: (26, 125)
m7: (43, 142)
n8: (46, 145)
a8: (57, 156)
b8: (48, 147)
c8: (89, 188)
d8: (90, 189)
e8: (19, 118)
f8: (99, 198)
g8: (95, 194)
h8: (87, 186)
m8: (39, 138)
n9: (68, 167)
a9: (6, 105)
b9: (80, 179)
c9: (9, 108)
d9: (59, 158)
e9: (22, 121)
f9: (14, 113)
g9: (20, 119)
h9: (29, 128)
m9: (2, 99)(3, 98)(4, 97)(5, 96)(6, 95)(7, 94)(8, 93)(9, 92)(10, 91)(11, 90)(12, 89)(13, 88)(14, 87)(15, 86)(16, 85)(17, 84)(18, 83)(19, 82)(20, 81)(21, 80)(22, 79)(23, 78)(24, 77)(25, 76)(26, 75)(27, 74)(28, 73)(29, 72)(30, 71)(31, 70)(32, 69)(33, 68)(34, 67)(35, 66)(36, 65)(37, 64)(38, 63)(39, 62)(40, 61)(41, 60)(42, 59)(43, 58)(44, 57)(45, 56)(46, 55)(47, 54)(48, 53)(49, 52)(50, 51)(101, 198)(102, 197)(103, 196)(104, 195)(105, 194)(106, 193)(107, 192)(108, 191)(109, 190)(110, 189)(111, 188)(112, 187)(113, 186)(114, 185)(115, 184)(116, 183)(117, 182)(118, 181)(119, 180)(120, 179)(121, 178)(122, 177)(123, 176)(124, 175)(125, 174)(126, 173)(127, 172)(128, 171)(129, 170)(130, 169)(131, 168)(132, 167)(133, 166)(134, 165)(135, 164)(136, 163)(137, 162)(138, 161)(139, 160)(140, 159)(141, 158)(142, 157)(143, 156)(144, 155)(145, 154)(146, 153)(147, 152)(148, 151)(149, 150)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 198, 1 ]
198
-1 99 198 2 101
-2 1 100 3 102
-3 2 101 4 103
-4 3 102 5 104
-5 4 103 6 105
-6 5 104 7 106
-7 6 105 8 107
-8 7 106 9 108
-9 8 107 10 109
-10 11 110 9 108
-11 12 111 10 109
-12 11 110 13 112
-13 12 111 14 113
-14 13 112 15 114
-15 14 113 16 115
-16 15 114 17 116
-17 16 115 18 117
-18 17 116 19 118
-19 18 117 20 119
-20 19 118 21 120
-21 22 121 20 119
-22 23 122 21 120
-23 22 121 24 123
-24 23 122 25 124
-25 24 123 26 125
-26 25 124 27 126
-27 26 125 28 127
-28 27 126 29 128
-29 28 127 30 129
-30 29 128 31 130
-31 30 129 32 131
-32 33 132 31 130
-33 34 133 32 131
-34 33 132 35 134
-35 34 133 36 135
-36 35 134 37 136
-37 36 135 38 137
-38 37 136 39 138
-39 38 137 40 139
-40 39 138 41 140
-41 40 139 42 141
-42 41 140 43 142
-43 44 143 42 141
-44 45 144 43 142
-45 44 143 46 145
-46 45 144 47 146
-47 46 145 48 147
-48 47 146 49 148
-49 48 147 50 149
-50 49 148 51 150
-51 50 149 52 151
-52 51 150 53 152
-53 52 151 54 153
-54 55 154 53 152
-55 56 155 54 153
-56 55 154 57 156
-57 56 155 58 157
-58 57 156 59 158
-59 58 157 60 159
-60 59 158 61 160
-61 60 159 62 161
-62 61 160 63 162
-63 62 161 64 163
-64 63 162 65 164
-65 66 165 64 163
-66 67 166 65 164
-67 66 165 68 167
-68 67 166 69 168
-69 68 167 70 169
-70 69 168 71 170
-71 70 169 72 171
-72 71 170 73 172
-73 72 171 74 173
-74 73 172 75 174
-75 74 173 76 175
-76 77 176 75 174
-77 78 177 76 175
-78 77 176 79 178
-79 78 177 80 179
-80 79 178 81 180
-81 80 179 82 181
-82 81 180 83 182
-83 82 181 84 183
-84 83 182 85 184
-85 84 183 86 185
-86 85 184 87 186
-87 88 187 86 185
-88 89 188 87 186
-89 88 187 90 189
-90 89 188 91 190
-91 90 189 92 191
-92 91 190 93 192
-93 92 191 94 193
-94 93 192 95 194
-95 94 193 96 195
-96 95 194 97 196
-97 96 195 98 197
-98 99 198 97 196
-99 1 100 98 197
-100 99 198 2 101
-101 1 100 3 102
-102 2 101 4 103
-103 3 102 5 104
-104 4 103 6 105
-105 5 104 7 106
-106 6 105 8 107
-107 7 106 9 108
-108 8 107 10 109
-109 11 110 9 108
-110 12 111 10 109
-111 11 110 13 112
-112 12 111 14 113
-113 13 112 15 114
-114 14 113 16 115
-115 15 114 17 116
-116 16 115 18 117
-117 17 116 19 118
-118 18 117 20 119
-119 19 118 21 120
-120 22 121 20 119
-121 23 122 21 120
-122 22 121 24 123
-123 23 122 25 124
-124 24 123 26 125
-125 25 124 27 126
-126 26 125 28 127
-127 27 126 29 128
-128 28 127 30 129
-129 29 128 31 130
-130 30 129 32 131
-131 33 132 31 130
-132 34 133 32 131
-133 33 132 35 134
-134 34 133 36 135
-135 35 134 37 136
-136 36 135 38 137
-137 37 136 39 138
-138 38 137 40 139
-139 39 138 41 140
-140 40 139 42 141
-141 41 140 43 142
-142 44 143 42 141
-143 45 144 43 142
-144 44 143 46 145
-145 45 144 47 146
-146 46 145 48 147
-147 47 146 49 148
-148 48 147 50 149
-149 49 148 51 150
-150 50 149 52 151
-151 51 150 53 152
-152 52 151 54 153
-153 55 154 53 152
-154 56 155 54 153
-155 55 154 57 156
-156 56 155 58 157
-157 57 156 59 158
-158 58 157 60 159
-159 59 158 61 160
-160 60 159 62 161
-161 61 160 63 162
-162 62 161 64 163
-163 63 162 65 164
-164 66 165 64 163
-165 67 166 65 164
-166 66 165 68 167
-167 67 166 69 168
-168 68 167 70 169
-169 69 168 71 170
-170 70 169 72 171
-171 71 170 73 172
-172 72 171 74 173
-173 73 172 75 174
-174 74 173 76 175
-175 77 176 75 174
-176 78 177 76 175
-177 77 176 79 178
-178 78 177 80 179
-179 79 178 81 180
-180 80 179 82 181
-181 81 180 83 182
-182 82 181 84 183
-183 83 182 85 184
-184 84 183 86 185
-185 85 184 87 186
-186 88 187 86 185
-187 89 188 87 186
-188 88 187 90 189
-189 89 188 91 190
-190 90 189 92 191
-191 91 190 93 192
-192 92 191 94 193
-193 93 192 95 194
-194 94 193 96 195
-195 95 194 97 196
-196 96 195 98 197
-197 99 198 97 196
-198 1 100 98 197
0

**************