[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 200, 1 ] =
W(100,2).
(I) Following is a form readable by MAGMA:
g:=Graph<200|{ {2, 3}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190,
191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179},
{176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164,
165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153},
{150, 151}, {148, 149}, {146, 147}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62,
63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46,
47}, {44, 45}, {42, 43}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15},
{16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31},
{32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {72, 73}, {74, 75}, {76, 77},
{78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93},
{94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107},
{108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120,
121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133},
{134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {1, 2},
{197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173,
174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150},
{145, 146}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45,
46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33,
34}, {37, 38}, {41, 42}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93,
94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121,
122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {3, 4}, {195,
196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148},
{67, 68}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36},
{75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124},
{131, 132}, {139, 140}, {7, 8}, {199, 200}, {183, 184}, {167, 168}, {151, 152},
{55, 56}, {23, 24}, {39, 40}, {71, 72}, {87, 88}, {103, 104}, {119, 120}, {135,
136}, {15, 16}, {175, 176}, {47, 48}, {79, 80}, {111, 112}, {143, 144}, {31,
32}, {159, 160}, {95, 96}, {4, 103}, {8, 107}, {12, 111}, {16, 115}, {20, 119},
{24, 123}, {28, 127}, {1, 100}, {2, 103}, {3, 102}, {8, 109}, {9, 108}, {10,
111}, {11, 110}, {16, 117}, {17, 116}, {18, 119}, {19, 118}, {24, 125}, {25,
124}, {26, 127}, {27, 126}, {1, 102}, {2, 101}, {9, 110}, {10, 109}, {17, 118},
{18, 117}, {25, 126}, {26, 125}, {3, 104}, {7, 108}, {19, 120}, {23, 124}, {4,
105}, {5, 104}, {6, 107}, {7, 106}, {20, 121}, {21, 120}, {22, 123}, {23, 122},
{5, 106}, {6, 105}, {21, 122}, {22, 121}, {11, 112}, {15, 116}, {12, 113}, {13,
112}, {14, 115}, {15, 114}, {13, 114}, {191, 192}, {63, 64}, {14, 113}, {27,
128}, {63, 164}, {59, 160}, {31, 132}, {91, 192}, {95, 196}, {28, 129}, {63,
162}, {62, 163}, {61, 160}, {60, 161}, {29, 128}, {30, 131}, {31, 130}, {92,
193}, {93, 192}, {94, 195}, {95, 194}, {29, 130}, {62, 161}, {61, 162}, {30,
129}, {93, 194}, {94, 193}, {32, 131}, {60, 159}, {56, 155}, {52, 151}, {48,
147}, {44, 143}, {36, 135}, {40, 139}, {96, 195}, {100, 199}, {32, 133}, {59,
158}, {58, 159}, {57, 156}, {56, 157}, {51, 150}, {50, 151}, {49, 148}, {48,
149}, {43, 142}, {42, 143}, {33, 132}, {34, 135}, {35, 134}, {40, 141}, {41,
140}, {96, 197}, {97, 196}, {98, 199}, {99, 198}, {33, 134}, {58, 157}, {57,
158}, {50, 149}, {49, 150}, {42, 141}, {41, 142}, {34, 133}, {97, 198}, {98,
197}, {35, 136}, {55, 156}, {51, 152}, {39, 140}, {99, 200}, {36, 137}, {55,
154}, {54, 155}, {53, 152}, {52, 153}, {37, 136}, {38, 139}, {39, 138}, {101,
200}, {37, 138}, {54, 153}, {53, 154}, {38, 137}, {43, 144}, {47, 148}, {44,
145}, {47, 146}, {46, 147}, {45, 144}, {45, 146}, {46, 145}, {1, 200}, {64,
163}, {68, 167}, {72, 171}, {76, 175}, {80, 179}, {84, 183}, {88, 187}, {92,
191}, {64, 165}, {67, 166}, {66, 167}, {65, 164}, {72, 173}, {73, 172}, {74,
175}, {75, 174}, {80, 181}, {81, 180}, {82, 183}, {83, 182}, {88, 189}, {89,
188}, {90, 191}, {91, 190}, {65, 166}, {66, 165}, {73, 174}, {74, 173}, {81,
182}, {82, 181}, {89, 190}, {90, 189}, {67, 168}, {71, 172}, {83, 184}, {87,
188}, {68, 169}, {69, 168}, {70, 171}, {71, 170}, {84, 185}, {85, 184}, {86,
187}, {87, 186}, {69, 170}, {70, 169}, {85, 186}, {86, 185}, {75, 176}, {79,
180}, {76, 177}, {77, 176}, {78, 179}, {79, 178}, {77, 178}, {78, 177}, {127,
128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (51, 151) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (91, 191)
c: (89, 189)
d: (58, 158)
e: (76, 176)
f: (71, 171)
g: (2, 102)
h: (56, 156)
m: (39, 139)
n1: (9, 109)
a1: (85, 185)
b1: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
100)(101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,
132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147,
148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163,
164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
196, 197, 198, 199, 200)
c1: (98, 198)
d1: (5, 105)
e1: (36, 136)
f1: (38, 138)
g1: (90, 190)
h1: (16, 116)
m1: (97, 197)
n2: (35, 135)
a2: (83, 183)
b2: (73, 173)
c2: (65, 165)
d2: (10, 110)
e2: (28, 128)
f2: (43, 143)
g2: (75, 175)
h2: (81, 181)
m2: (44, 144)
n3: (18, 118)
a3: (42, 142)
b3: (94, 194)
c3: (63, 163)
d3: (32, 132)
e3: (53, 153)
f3: (88, 188)
g3: (22, 122)
h3: (80, 180)
m3: (54, 154)
n4: (27, 127)
a4: (6, 106)
b4: (7, 107)
c4: (55, 155)
d4: (82, 182)
e4: (52, 152)
f4: (47, 147)
g4: (95, 195)
h4: (64, 164)
m4: (29, 129)
n5: (13, 113)
a5: (17, 117)
b5: (41, 141)
c5: (78, 178)
d5: (26, 126)
e5: (67, 167)
f5: (12, 112)
g5: (11, 111)
h5: (72, 172)
m5: (48, 148)
n6: (23, 123)
a6: (8, 108)
b6: (87, 187)
c6: (93, 193)
d6: (31, 131)
e6: (62, 162)
f6: (60, 160)
g6: (40, 140)
h6: (45, 145)
m6: (68, 168)
n7: (4, 104)
a7: (66, 166)
b7: (19, 119)
c7: (96, 196)
d7: (30, 130)
e7: (61, 161)
f7: (20, 120)
g7: (77, 177)
h7: (50, 150)
m7: (3, 103)
n8: (57, 157)
a8: (84, 184)
b8: (70, 170)
c8: (69, 169)
d8: (2, 100)(3, 99)(4, 98)(5, 97)(6, 96)(7, 95)(8, 94)(9, 93)(10, 92)(11,
91)(12, 90)(13, 89)(14, 88)(15, 87)(16, 86)(17, 85)(18, 84)(19, 83)(20, 82)(21,
81)(22, 80)(23, 79)(24, 78)(25, 77)(26, 76)(27, 75)(28, 74)(29, 73)(30, 72)(31,
71)(32, 70)(33, 69)(34, 68)(35, 67)(36, 66)(37, 65)(38, 64)(39, 63)(40, 62)(41,
61)(42, 60)(43, 59)(44, 58)(45, 57)(46, 56)(47, 55)(48, 54)(49, 53)(50, 52)(102,
200)(103, 199)(104, 198)(105, 197)(106, 196)(107, 195)(108, 194)(109, 193)(110,
192)(111, 191)(112, 190)(113, 189)(114, 188)(115, 187)(116, 186)(117, 185)(118,
184)(119, 183)(120, 182)(121, 181)(122, 180)(123, 179)(124, 178)(125, 177)(126,
176)(127, 175)(128, 174)(129, 173)(130, 172)(131, 171)(132, 170)(133, 169)(134,
168)(135, 167)(136, 166)(137, 165)(138, 164)(139, 163)(140, 162)(141, 161)(142,
160)(143, 159)(144, 158)(145, 157)(146, 156)(147, 155)(148, 154)(149, 153)(150,
152)
e8: (46, 146)
f8: (34, 134)
g8: (100, 200)
h8: (99, 199)
m8: (33, 133)
n9: (21, 121)
a9: (86, 186)
b9: (25, 125)
c9: (15, 115)
d9: (14, 114)
e9: (74, 174)
f9: (37, 137)
g9: (59, 159)
h9: (92, 192)
m9: (79, 179)
n10: (24, 124)
C4[ 200, 1 ]
200
-1 100 2 200 102
-2 1 101 3 103
-3 2 102 4 104
-4 3 103 5 105
-5 4 104 6 106
-6 5 105 7 107
-7 6 106 8 108
-8 7 107 9 109
-9 110 8 108 10
-10 11 111 9 109
-11 110 12 112 10
-12 11 111 13 113
-13 12 112 14 114
-14 13 113 15 115
-15 14 114 16 116
-16 15 115 17 117
-17 16 116 18 118
-18 17 117 19 119
-19 18 118 20 120
-20 121 19 119 21
-21 22 122 20 120
-22 121 23 123 21
-23 22 122 24 124
-24 23 123 25 125
-25 24 124 26 126
-26 25 125 27 127
-27 26 126 28 128
-28 27 127 29 129
-29 28 128 30 130
-30 29 129 31 131
-31 132 30 130 32
-32 33 133 31 131
-33 132 34 134 32
-34 33 133 35 135
-35 34 134 36 136
-36 35 135 37 137
-37 36 136 38 138
-38 37 137 39 139
-39 38 138 40 140
-40 39 139 41 141
-41 40 140 42 142
-42 143 41 141 43
-43 44 144 42 142
-44 143 45 145 43
-45 44 144 46 146
-46 45 145 47 147
-47 46 146 48 148
-48 47 147 49 149
-49 48 148 50 150
-50 49 149 51 151
-51 50 150 52 152
-52 51 151 53 153
-53 154 52 152 54
-54 55 155 53 153
-55 154 56 156 54
-56 55 155 57 157
-57 56 156 58 158
-58 57 157 59 159
-59 58 158 60 160
-60 59 159 61 161
-61 60 160 62 162
-62 61 161 63 163
-63 62 162 64 164
-64 165 63 163 65
-65 66 166 64 164
-66 165 67 167 65
-67 66 166 68 168
-68 67 167 69 169
-69 68 168 70 170
-70 69 169 71 171
-71 70 170 72 172
-72 71 171 73 173
-73 72 172 74 174
-74 73 173 75 175
-75 176 74 174 76
-76 77 177 75 175
-77 176 78 178 76
-78 77 177 79 179
-79 78 178 80 180
-80 79 179 81 181
-81 80 180 82 182
-82 81 181 83 183
-83 82 182 84 184
-84 83 183 85 185
-85 84 184 86 186
-86 187 85 185 87
-87 88 188 86 186
-88 187 89 189 87
-89 88 188 90 190
-90 89 189 91 191
-91 90 190 92 192
-92 91 191 93 193
-93 92 192 94 194
-94 93 193 95 195
-95 94 194 96 196
-96 95 195 97 197
-97 198 96 196 98
-98 99 199 97 197
-99 198 100 200 98
-100 99 1 199 101
-101 100 2 200 102
-102 1 101 3 103
-103 2 102 4 104
-104 3 103 5 105
-105 4 104 6 106
-106 5 105 7 107
-107 6 106 8 108
-108 7 107 9 109
-109 110 8 108 10
-110 11 111 9 109
-111 110 12 112 10
-112 11 111 13 113
-113 12 112 14 114
-114 13 113 15 115
-115 14 114 16 116
-116 15 115 17 117
-117 16 116 18 118
-118 17 117 19 119
-119 18 118 20 120
-120 121 19 119 21
-121 22 122 20 120
-122 121 23 123 21
-123 22 122 24 124
-124 23 123 25 125
-125 24 124 26 126
-126 25 125 27 127
-127 26 126 28 128
-128 27 127 29 129
-129 28 128 30 130
-130 29 129 31 131
-131 132 30 130 32
-132 33 133 31 131
-133 132 34 134 32
-134 33 133 35 135
-135 34 134 36 136
-136 35 135 37 137
-137 36 136 38 138
-138 37 137 39 139
-139 38 138 40 140
-140 39 139 41 141
-141 40 140 42 142
-142 143 41 141 43
-143 44 144 42 142
-144 143 45 145 43
-145 44 144 46 146
-146 45 145 47 147
-147 46 146 48 148
-148 47 147 49 149
-149 48 148 50 150
-150 49 149 51 151
-151 50 150 52 152
-152 51 151 53 153
-153 154 52 152 54
-154 55 155 53 153
-155 154 56 156 54
-156 55 155 57 157
-157 56 156 58 158
-158 57 157 59 159
-159 58 158 60 160
-160 59 159 61 161
-161 60 160 62 162
-162 61 161 63 163
-163 62 162 64 164
-164 165 63 163 65
-165 66 166 64 164
-166 165 67 167 65
-167 66 166 68 168
-168 67 167 69 169
-169 68 168 70 170
-170 69 169 71 171
-171 70 170 72 172
-172 71 171 73 173
-173 72 172 74 174
-174 73 173 75 175
-175 176 74 174 76
-176 77 177 75 175
-177 176 78 178 76
-178 77 177 79 179
-179 78 178 80 180
-180 79 179 81 181
-181 80 180 82 182
-182 81 181 83 183
-183 82 182 84 184
-184 83 183 85 185
-185 84 184 86 186
-186 187 85 185 87
-187 88 188 86 186
-188 187 89 189 87
-189 88 188 90 190
-190 89 189 91 191
-191 90 190 92 192
-192 91 191 93 193
-193 92 192 94 194
-194 93 193 95 195
-195 94 194 96 196
-196 95 195 97 197
-197 198 96 196 98
-198 99 199 97 197
-199 198 100 200 98
-200 99 1 199 101
0