C4graphGraph forms for C4 [ 200, 20 ] = PL(MC3(4,25,1,24,7,0,1),[4^25,50^2])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 200, 20 ] = PL(MC3(4,25,1,24,7,0,1),[4^25,50^2]).

(I) Following is a form readable by MAGMA:

g:=Graph<200|{ {97, 104}, {99, 123}, {97, 122}, {99, 126}, {75, 107}, {91, 123}, {74, 107}, {89, 120}, {69, 103}, {86, 116}, {83, 118}, {91, 126}, {74, 109}, {88, 112}, {84, 125}, {67, 105}, {80, 122}, {83, 120}, {89, 117}, {68, 106}, {73, 103}, {94, 113}, {85, 103}, {95, 109}, {95, 107}, {64, 117}, {75, 125}, {64, 120}, {86, 110}, {72, 112}, {73, 113}, {80, 104}, {67, 122}, {94, 103}, {68, 125}, {72, 117}, {84, 106}, {61, 125}, {54, 119}, {52, 118}, {45, 110}, {53, 124}, {59, 113}, {53, 126}, {52, 120}, {56, 116}, {60, 112}, {39, 105}, {33, 110}, {37, 118}, {59, 104}, {40, 124}, {40, 126}, {45, 123}, {41, 127}, {56, 110}, {61, 107}, {37, 114}, {49, 105}, {33, 123}, {54, 108}, {43, 112}, {39, 122}, {43, 117}, {49, 111}, {5, 101}, {19, 114}, {4, 102}, {29, 127}, {8, 106}, {5, 102}, {26, 121}, {6, 101}, {24, 124}, {3, 102}, {19, 118}, {8, 111}, {12, 101}, {26, 115}, {12, 102}, {24, 114}, {28, 119}, {9, 101}, {31, 113}, {25, 105}, {28, 108}, {2, 115}, {1, 115}, {4, 119}, {10, 121}, {7, 116}, {3, 119}, {13, 121}, {25, 111}, {11, 124}, {31, 104}, {18, 106}, {11, 114}, {5, 127}, {22, 108}, {22, 109}, {16, 108}, {16, 109}, {18, 111}, {1, 127}, {13, 115}, {10, 116}, {7, 121}, {7, 135}, {21, 149}, {20, 148}, {17, 145}, {60, 188}, {5, 132}, {42, 171}, {34, 163}, {32, 161}, {3, 129}, {30, 156}, {27, 153}, {58, 184}, {13, 142}, {29, 158}, {32, 164}, {52, 176}, {59, 191}, {63, 187}, {1, 132}, {23, 146}, {57, 188}, {9, 143}, {46, 168}, {32, 166}, {53, 179}, {54, 176}, {23, 144}, {1, 137}, {44, 164}, {74, 194}, {76, 196}, {9, 128}, {65, 200}, {30, 148}, {46, 164}, {34, 168}, {2, 137}, {45, 166}, {20, 159}, {60, 183}, {67, 200}, {13, 129}, {46, 162}, {21, 153}, {79, 195}, {3, 142}, {44, 161}, {32, 173}, {14, 158}, {21, 133}, {55, 167}, {23, 134}, {40, 185}, {27, 137}, {63, 173}, {9, 154}, {51, 160}, {58, 169}, {41, 189}, {15, 153}, {87, 193}, {43, 189}, {35, 181}, {18, 132}, {55, 161}, {17, 134}, {39, 176}, {34, 181}, {55, 175}, {91, 195}, {58, 162}, {45, 180}, {81, 200}, {15, 149}, {47, 181}, {16, 139}, {83, 200}, {46, 181}, {28, 135}, {6, 154}, {93, 193}, {42, 182}, {24, 132}, {17, 140}, {90, 199}, {62, 163}, {43, 180}, {89, 198}, {53, 170}, {54, 169}, {15, 175}, {29, 189}, {58, 155}, {12, 174}, {96, 194}, {31, 189}, {25, 187}, {19, 177}, {10, 169}, {11, 174}, {98, 199}, {57, 156}, {8, 174}, {44, 138}, {24, 190}, {2, 165}, {97, 198}, {15, 167}, {48, 152}, {40, 128}, {30, 182}, {25, 177}, {19, 187}, {62, 150}, {63, 151}, {12, 165}, {38, 143}, {33, 136}, {27, 178}, {23, 190}, {14, 165}, {50, 153}, {37, 142}, {31, 180}, {26, 177}, {20, 191}, {2, 174}, {18, 190}, {6, 170}, {55, 154}, {57, 148}, {63, 146}, {14, 160}, {36, 138}, {51, 157}, {4, 171}, {35, 140}, {17, 190}, {14, 191}, {42, 155}, {27, 170}, {26, 171}, {20, 165}, {60, 141}, {35, 145}, {50, 128}, {36, 151}, {56, 139}, {59, 136}, {6, 178}, {42, 158}, {34, 150}, {4, 177}, {38, 147}, {30, 171}, {36, 146}, {41, 159}, {57, 129}, {62, 134}, {38, 159}, {10, 176}, {48, 138}, {22, 172}, {50, 137}, {48, 140}, {51, 143}, {29, 160}, {50, 143}, {47, 146}, {41, 148}, {22, 168}, {47, 144}, {49, 142}, {61, 130}, {72, 136}, {93, 156}, {74, 136}, {90, 152}, {78, 140}, {81, 147}, {96, 163}, {65, 133}, {99, 167}, {67, 135}, {68, 128}, {85, 144}, {7, 193}, {69, 131}, {81, 151}, {70, 129}, {90, 157}, {8, 192}, {76, 134}, {79, 133}, {11, 192}, {93, 150}, {87, 155}, {92, 145}, {98, 175}, {82, 157}, {66, 147}, {92, 141}, {71, 150}, {89, 139}, {16, 196}, {99, 183}, {87, 131}, {83, 135}, {81, 133}, {69, 144}, {88, 141}, {79, 154}, {21, 195}, {78, 152}, {70, 158}, {77, 149}, {65, 152}, {91, 130}, {88, 130}, {71, 156}, {65, 157}, {100, 184}, {94, 130}, {28, 193}, {100, 185}, {66, 159}, {70, 155}, {93, 131}, {92, 131}, {37, 197}, {39, 199}, {38, 198}, {77, 173}, {82, 178}, {36, 197}, {33, 194}, {35, 192}, {78, 173}, {84, 179}, {76, 164}, {94, 182}, {82, 186}, {100, 141}, {80, 186}, {97, 139}, {96, 138}, {77, 166}, {95, 180}, {64, 172}, {85, 185}, {75, 167}, {85, 184}, {44, 194}, {88, 182}, {71, 169}, {76, 162}, {77, 163}, {79, 161}, {47, 192}, {92, 179}, {66, 178}, {98, 147}, {82, 160}, {52, 199}, {49, 197}, {48, 197}, {100, 145}, {98, 151}, {96, 149}, {90, 175}, {87, 162}, {51, 198}, {73, 188}, {78, 187}, {69, 179}, {72, 191}, {66, 186}, {95, 166}, {62, 196}, {86, 172}, {64, 186}, {70, 188}, {56, 196}, {75, 183}, {80, 172}, {68, 185}, {61, 195}, {86, 168}, {84, 170}, {73, 183}, {71, 184} }>;

(II) A more general form is to represent the graph as the orbit of {97, 104} under the group generated by the following permutations:

a: (1, 2)(3, 4)(5, 12)(6, 9)(7, 10)(8, 18)(11, 24)(13, 26)(14, 29)(15, 21)(16, 22)(17, 35)(19, 37)(20, 41)(23, 47)(25, 49)(27, 50)(28, 54)(30, 57)(31, 59)(32, 44)(33, 45)(34, 62)(36, 63)(38, 66)(39, 67)(40, 53)(42, 70)(43, 72)(46, 76)(48, 78)(51, 82)(52, 83)(55, 79)(56, 86)(58, 87)(60, 88)(61, 75)(64, 89)(65, 90)(68, 84)(69, 85)(71, 93)(73, 94)(74, 95)(77, 96)(80, 97)(81, 98)(91, 99)(92, 100)(127, 165)(128, 170)(129, 171)(130, 183)(131, 184)(132, 174)(133, 175)(134, 181)(135, 176)(136, 180)(138, 173)(139, 172)(142, 177)(143, 178)(166, 194)(167, 195)(168, 196)(169, 193)(179, 185)(182, 188)(186, 198)(187, 197)(189, 191)(190, 192)(199, 200)
b: (1, 3, 7, 16, 33, 61, 40, 8, 19, 39, 64, 31, 60, 69, 17, 36, 65, 38, 14, 30, 58, 34, 32, 15, 6)(2, 4, 10, 22, 45, 75, 53, 18, 37, 67, 89, 59, 88, 85, 35, 63, 90, 66, 29, 57, 87, 62, 44, 21, 9)(5, 13, 28, 56, 74, 91, 68, 11, 25, 52, 80, 43, 73, 92, 23, 48, 81, 51, 20, 42, 71, 46, 77, 55, 27)(12, 26, 54, 86, 95, 99, 84, 24, 49, 83, 97, 72, 94, 100, 47, 78, 98, 82, 41, 70, 93, 76, 96, 79, 50)(101, 115, 119, 116, 109, 123, 125, 124, 111, 118, 122, 117, 113, 141, 144, 140, 151, 157, 159, 158, 156, 162, 163, 161, 153)(102, 121, 108, 110, 107, 126, 106, 114, 105, 120, 104, 112, 103, 145, 146, 152, 147, 160, 148, 155, 150, 164, 149, 154, 137)(127, 129, 193, 196, 194, 195, 128, 174, 177, 176, 172, 180, 183, 179, 190, 197, 200, 198, 191, 182, 184, 181, 173, 175, 178)(130, 185, 192, 187, 199, 186, 189, 188, 131, 134, 138, 133, 143, 165, 171, 169, 168, 166, 167, 170, 132, 142, 135, 139, 136)
c: (2, 5)(3, 14, 6, 8)(4, 20, 9, 11)(7, 31, 15, 17)(10, 43, 21, 23)(13, 29, 27, 18)(16, 33, 32, 34)(19, 30, 38, 40)(22, 74, 44, 46)(24, 26, 41, 50)(25, 57, 51, 53)(28, 59, 55, 35)(36, 58, 64, 61)(37, 42, 66, 68)(39, 60, 65, 69)(45, 77, 62, 56)(47, 54, 72, 79)(48, 87, 80, 75)(49, 70, 82, 84)(52, 88, 81, 85)(63, 71, 89, 91)(67, 73, 90, 92)(76, 86, 95, 96)(78, 93, 97, 99)(83, 94, 98, 100)(101, 174, 102, 165)(103, 199, 141, 200)(104, 167, 140, 193)(105, 188, 157, 179)(106, 142, 158, 178)(107, 138, 162, 172)(108, 136, 161, 181)(109, 194, 164, 168)(110, 166, 163, 196)(111, 129, 160, 170)(112, 133, 144, 176)(113, 175, 145, 135)(114, 171, 159, 128)(115, 127, 137, 132)(116, 180, 149, 134)(117, 195, 146, 169)(118, 182, 147, 185)(119, 191, 154, 192)(120, 130, 151, 184)(121, 189, 153, 190)(122, 183, 152, 131)(123, 173, 150, 139)(124, 177, 148, 143)(125, 197, 155, 186)(126, 187, 156, 198)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 200, 20 ]
200
-1 132 115 137 127
-2 165 115 137 174
-3 102 129 119 142
-4 177 102 171 119
-5 132 101 102 127
-6 154 101 178 170
-7 121 135 116 193
-8 111 192 106 174
-9 143 154 101 128
-10 121 176 169 116
-11 124 114 192 174
-12 165 101 102 174
-13 121 115 129 142
-14 165 158 191 160
-15 167 149 153 175
-16 139 108 196 109
-17 134 145 190 140
-18 132 111 190 106
-19 187 177 114 118
-20 165 191 148 159
-21 133 149 195 153
-22 168 172 108 109
-23 144 134 146 190
-24 132 124 190 114
-25 187 111 177 105
-26 121 177 115 171
-27 178 137 170 153
-28 135 193 108 119
-29 189 158 127 160
-30 156 148 171 182
-31 189 113 180 104
-32 166 161 173 164
-33 110 123 136 194
-34 168 181 150 163
-35 145 181 192 140
-36 146 138 151 197
-37 114 118 142 197
-38 143 198 147 159
-39 176 122 199 105
-40 124 126 128 185
-41 189 148 159 127
-42 155 158 171 182
-43 112 189 180 117
-44 138 161 194 164
-45 110 166 123 180
-46 168 181 162 164
-47 144 146 181 192
-48 138 140 152 197
-49 111 105 142 197
-50 143 137 128 153
-51 143 198 157 160
-52 176 199 118 120
-53 124 179 126 170
-54 176 169 108 119
-55 154 167 161 175
-56 110 116 139 196
-57 188 156 148 129
-58 155 169 162 184
-59 113 136 191 104
-60 188 112 183 141
-61 125 107 195 130
-62 134 150 163 196
-63 187 146 151 173
-64 117 172 120 186
-65 133 200 157 152
-66 178 147 159 186
-67 122 200 135 105
-68 125 106 128 185
-69 144 179 103 131
-70 155 188 158 129
-71 156 169 150 184
-72 112 136 191 117
-73 188 113 103 183
-74 136 194 107 109
-75 167 125 183 107
-76 134 162 196 164
-77 166 149 173 163
-78 187 140 173 152
-79 154 133 161 195
-80 122 104 172 186
-81 133 200 147 151
-82 178 157 160 186
-83 200 135 118 120
-84 179 125 170 106
-85 144 103 184 185
-86 110 168 116 172
-87 155 193 162 131
-88 112 182 130 141
-89 198 117 139 120
-90 199 157 152 175
-91 123 126 195 130
-92 145 179 141 131
-93 156 193 150 131
-94 113 103 182 130
-95 166 180 107 109
-96 138 149 194 163
-97 198 122 104 139
-98 199 147 151 175
-99 123 167 126 183
-100 145 184 141 185
-101 12 5 6 9
-102 12 3 4 5
-103 69 94 73 85
-104 80 59 31 97
-105 67 25 49 39
-106 68 18 84 8
-107 61 95 74 75
-108 22 16 28 54
-109 22 16 95 74
-110 33 45 56 86
-111 25 49 18 8
-112 88 60 72 43
-113 59 94 73 31
-114 11 24 37 19
-115 1 2 13 26
-116 56 7 86 10
-117 89 72 64 43
-118 37 83 19 52
-119 3 4 28 54
-120 89 83 52 64
-121 13 26 7 10
-122 67 80 39 97
-123 33 99 45 91
-124 11 24 40 53
-125 68 61 84 75
-126 99 91 40 53
-127 1 5 29 41
-128 68 50 40 9
-129 13 57 3 70
-130 88 91 61 94
-131 69 92 93 87
-132 1 24 5 18
-133 79 81 21 65
-134 23 17 62 76
-135 67 28 83 7
-136 33 59 72 74
-137 1 2 27 50
-138 44 36 48 96
-139 56 89 16 97
-140 78 35 48 17
-141 88 100 92 60
-142 13 3 37 49
-143 38 50 51 9
-144 23 47 69 85
-145 100 35 92 17
-146 23 36 47 63
-147 66 81 38 98
-148 57 30 41 20
-149 77 15 96 21
-150 34 71 93 62
-151 36 81 63 98
-152 78 90 48 65
-153 15 27 50 21
-154 55 79 6 9
-155 58 70 42 87
-156 57 71 93 30
-157 90 82 51 65
-158 14 70 29 42
-159 66 38 41 20
-160 14 82 29 51
-161 44 55 79 32
-162 46 58 76 87
-163 77 34 62 96
-164 44 46 32 76
-165 12 2 14 20
-166 77 45 95 32
-167 55 99 15 75
-168 22 34 46 86
-169 58 71 10 54
-170 27 6 84 53
-171 4 26 30 42
-172 22 80 64 86
-173 77 78 63 32
-174 11 12 2 8
-175 55 90 15 98
-176 39 52 10 54
-177 25 4 26 19
-178 66 27 82 6
-179 69 92 84 53
-180 45 95 31 43
-181 34 35 46 47
-182 88 94 30 42
-183 99 60 73 75
-184 100 58 71 85
-185 100 68 40 85
-186 66 80 82 64
-187 78 25 19 63
-188 57 70 60 73
-189 29 41 31 43
-190 23 24 17 18
-191 14 59 72 20
-192 11 35 47 8
-193 93 28 7 87
-194 33 44 74 96
-195 79 91 61 21
-196 56 16 62 76
-197 36 37 48 49
-198 89 38 51 97
-199 90 39 52 98
-200 67 81 83 65
0

**************