C4graphGraph forms for C4 [ 200, 30 ] = XI(Cmap(100,7){8,8|4}_10)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 200, 30 ] = XI(Cmap(100,7){8,8|4}_10).

(I) Following is a form readable by MAGMA:

g:=Graph<200|{ {93, 124}, {88, 122}, {94, 124}, {92, 121}, {95, 121}, {69, 111}, {80, 123}, {65, 109}, {71, 106}, {86, 120}, {70, 105}, {66, 115}, {93, 111}, {76, 127}, {88, 108}, {71, 114}, {75, 126}, {70, 113}, {64, 122}, {75, 113}, {78, 117}, {80, 109}, {40, 104}, {43, 107}, {42, 106}, {41, 105}, {52, 117}, {60, 127}, {52, 126}, {58, 112}, {61, 118}, {42, 102}, {43, 103}, {55, 123}, {51, 125}, {33, 115}, {58, 104}, {44, 127}, {36, 112}, {45, 120}, {34, 116}, {36, 125}, {8, 105}, {22, 119}, {15, 110}, {13, 108}, {4, 102}, {12, 110}, {14, 109}, {1, 101}, {15, 107}, {3, 103}, {2, 102}, {8, 109}, {29, 120}, {17, 116}, {1, 103}, {16, 118}, {2, 101}, {30, 121}, {24, 127}, {1, 105}, {6, 110}, {3, 107}, {2, 106}, {12, 101}, {20, 125}, {18, 123}, {7, 108}, {29, 118}, {28, 119}, {24, 115}, {21, 126}, {17, 122}, {2, 110}, {4, 104}, {3, 111}, {6, 107}, {27, 118}, {25, 116}, {28, 114}, {5, 106}, {26, 117}, {19, 124}, {7, 104}, {1, 113}, {23, 103}, {22, 102}, {23, 101}, {4, 119}, {8, 123}, {4, 112}, {10, 126}, {9, 125}, {5, 114}, {9, 112}, {11, 114}, {14, 116}, {15, 117}, {10, 113}, {11, 119}, {5, 120}, {7, 122}, {13, 115}, {18, 108}, {3, 124}, {16, 111}, {6, 121}, {17, 145}, {19, 147}, {18, 146}, {60, 188}, {68, 196}, {7, 134}, {24, 153}, {20, 149}, {15, 142}, {13, 140}, {11, 138}, {9, 136}, {49, 176}, {63, 190}, {31, 157}, {57, 187}, {10, 137}, {14, 141}, {50, 177}, {5, 128}, {77, 200}, {35, 165}, {12, 139}, {39, 160}, {36, 172}, {57, 177}, {72, 192}, {78, 198}, {38, 175}, {32, 170}, {42, 160}, {33, 171}, {63, 181}, {37, 174}, {48, 187}, {59, 176}, {72, 195}, {18, 158}, {27, 151}, {58, 182}, {43, 166}, {69, 200}, {74, 196}, {8, 135}, {40, 167}, {56, 183}, {76, 195}, {46, 190}, {56, 168}, {62, 174}, {14, 159}, {20, 134}, {21, 135}, {80, 194}, {13, 158}, {85, 198}, {31, 140}, {41, 189}, {84, 192}, {87, 194}, {6, 144}, {33, 183}, {59, 173}, {35, 187}, {89, 193}, {25, 128}, {92, 197}, {45, 180}, {29, 132}, {27, 130}, {62, 167}, {34, 184}, {59, 161}, {60, 166}, {26, 129}, {94, 197}, {39, 188}, {30, 133}, {17, 141}, {91, 199}, {47, 179}, {51, 175}, {88, 197}, {10, 148}, {31, 129}, {55, 169}, {9, 150}, {87, 200}, {44, 179}, {28, 131}, {27, 132}, {16, 143}, {58, 165}, {20, 180}, {100, 196}, {57, 153}, {25, 184}, {32, 130}, {96, 194}, {11, 168}, {35, 128}, {26, 185}, {59, 152}, {30, 186}, {100, 192}, {12, 169}, {23, 178}, {55, 146}, {56, 157}, {48, 151}, {96, 199}, {43, 131}, {49, 152}, {51, 154}, {63, 150}, {21, 191}, {49, 155}, {54, 156}, {29, 182}, {50, 153}, {32, 141}, {47, 130}, {45, 128}, {40, 133}, {34, 143}, {40, 134}, {41, 135}, {50, 156}, {53, 155}, {57, 151}, {24, 183}, {46, 129}, {33, 142}, {16, 160}, {53, 132}, {19, 161}, {61, 143}, {23, 164}, {48, 131}, {41, 154}, {52, 135}, {54, 133}, {56, 139}, {36, 144}, {39, 147}, {38, 146}, {37, 145}, {22, 163}, {49, 132}, {51, 134}, {21, 162}, {32, 151}, {50, 133}, {44, 148}, {46, 150}, {45, 149}, {30, 167}, {42, 147}, {38, 159}, {37, 156}, {34, 155}, {28, 166}, {52, 142}, {26, 161}, {47, 148}, {37, 158}, {25, 165}, {61, 129}, {62, 130}, {53, 136}, {55, 138}, {19, 173}, {31, 161}, {54, 137}, {79, 143}, {73, 136}, {84, 149}, {83, 146}, {82, 144}, {74, 137}, {82, 145}, {97, 167}, {97, 166}, {100, 163}, {99, 164}, {98, 170}, {99, 171}, {64, 139}, {98, 169}, {83, 152}, {81, 157}, {83, 159}, {82, 158}, {94, 147}, {66, 140}, {95, 144}, {97, 174}, {91, 139}, {64, 145}, {99, 178}, {75, 152}, {79, 155}, {73, 156}, {76, 153}, {22, 192}, {94, 136}, {77, 154}, {93, 138}, {90, 141}, {100, 189}, {84, 142}, {99, 185}, {98, 184}, {65, 157}, {71, 154}, {97, 188}, {81, 140}, {72, 149}, {65, 159}, {74, 148}, {73, 150}, {39, 199}, {95, 191}, {86, 182}, {68, 165}, {85, 180}, {76, 173}, {35, 193}, {92, 190}, {89, 187}, {38, 196}, {80, 179}, {96, 131}, {85, 177}, {87, 179}, {69, 160}, {90, 191}, {81, 180}, {72, 173}, {74, 175}, {83, 181}, {92, 186}, {88, 190}, {73, 174}, {91, 188}, {87, 176}, {64, 168}, {98, 138}, {66, 170}, {67, 171}, {71, 175}, {86, 191}, {96, 137}, {44, 198}, {70, 172}, {89, 178}, {46, 195}, {79, 162}, {47, 193}, {67, 172}, {53, 197}, {90, 170}, {69, 181}, {77, 189}, {68, 182}, {91, 169}, {86, 164}, {81, 163}, {54, 194}, {93, 168}, {65, 183}, {85, 163}, {48, 199}, {63, 200}, {78, 185}, {67, 186}, {68, 189}, {60, 198}, {66, 184}, {67, 185}, {89, 162}, {70, 186}, {77, 176}, {95, 162}, {79, 178}, {61, 195}, {90, 164}, {82, 172}, {75, 181}, {62, 193}, {84, 171}, {78, 177} }>;

(II) A more general form is to represent the graph as the orbit of {93, 124} under the group generated by the following permutations:

a: (1, 2, 6, 3, 23, 12, 15, 43)(4, 92, 16, 90, 56, 78, 96, 41)(5, 82, 19, 89, 55, 84, 97, 75)(7, 46, 27, 14, 81, 50, 87, 68)(8, 22, 30, 69, 86, 64, 26, 48)(9, 53, 34, 66, 24, 44, 74, 51)(10, 71, 36, 94, 79, 98, 33, 60)(11, 67, 39, 21)(13, 76, 47, 38, 20, 73, 49, 25)(17, 31, 57, 80, 100, 40, 63, 29)(18, 72, 62, 83, 45, 37, 59, 35)(28, 70, 42, 95, 93, 99, 91, 52)(32, 65, 85, 54, 77, 58, 88, 61)(101, 110, 107, 103)(102, 121, 111, 164, 139, 117, 131, 105)(104, 190, 118, 141, 157, 177, 194, 189)(106, 144, 124, 178, 169, 142, 166, 113)(108, 195, 130, 159, 180, 156, 176, 165)(109, 163, 133, 200, 182, 122, 129, 151)(112, 197, 143, 170, 183, 198, 137, 154)(114, 172, 147, 162, 138, 171, 188, 126)(115, 127, 148, 175, 125, 136, 155, 184)(116, 140, 153, 179, 196, 134, 150, 132)(119, 186, 160, 191, 168, 185, 199, 135)(120, 145, 161, 187, 123, 192, 167, 181)(128, 158, 173, 193, 146, 149, 174, 152)
b: (2, 41)(3, 75)(4, 68)(5, 51)(6, 21)(7, 25)(8, 12)(9, 29)(10, 43)(11, 38)(13, 66)(14, 64)(15, 52)(16, 63)(18, 98)(19, 59)(20, 45)(22, 100)(23, 70)(27, 73)(28, 74)(30, 89)(32, 37)(34, 88)(35, 40)(36, 86)(39, 87)(42, 77)(44, 60)(46, 61)(47, 97)(48, 54)(49, 94)(50, 57)(56, 65)(67, 99)(79, 92)(80, 91)(82, 90)(83, 93)(101, 105)(102, 189)(103, 113)(104, 165)(106, 154)(107, 126)(108, 184)(109, 139)(110, 135)(111, 181)(112, 182)(114, 175)(116, 122)(118, 150)(119, 196)(120, 125)(121, 162)(123, 169)(124, 152)(128, 134)(130, 174)(131, 137)(132, 136)(133, 187)(138, 146)(141, 145)(143, 190)(144, 191)(147, 176)(148, 166)(151, 156)(155, 197)(158, 170)(159, 168)(160, 200)(164, 172)(167, 193)(178, 186)(179, 188)(194, 199)
c: (2, 3, 12, 43)(4, 94, 64, 97)(5, 16, 98, 48)(7, 73)(8, 10, 41, 75)(9, 88, 37, 40)(11, 39)(13, 50, 20, 46)(14, 47, 68, 49)(17, 62, 58, 53)(18, 54, 51, 63)(19, 56, 60, 22)(24, 85, 72, 31)(25, 27)(26, 33, 78, 84)(28, 42, 93, 91)(29, 34, 32, 35)(30, 36, 92, 82)(38, 87)(44, 100, 59, 65)(45, 61, 66, 57)(55, 96, 71, 69)(74, 77, 83, 80)(76, 81)(79, 90, 89, 86)(101, 103)(102, 124, 139, 166)(104, 136, 122, 174)(105, 113)(106, 111, 169, 131)(107, 110)(108, 156, 134, 150)(109, 148, 189, 152)(112, 197, 145, 167)(114, 160, 138, 199)(115, 177, 149, 129)(116, 130, 165, 132)(117, 142)(118, 184, 151, 128)(119, 147, 168, 188)(120, 143, 170, 187)(121, 144)(123, 137, 154, 181)(125, 190, 158, 133)(126, 135)(127, 163, 173, 157)(140, 153, 180, 195)(141, 193, 182, 155)(146, 194, 175, 200)(159, 179, 196, 176)(161, 183, 198, 192)(162, 191)(164, 178)(171, 185)(172, 186)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 200, 30 ]
200
-1 101 113 103 105
-2 110 101 102 106
-3 111 124 103 107
-4 112 102 104 119
-5 114 106 128 120
-6 110 121 144 107
-7 122 134 104 108
-8 123 135 105 109
-9 112 125 136 150
-10 113 126 137 148
-11 168 114 138 119
-12 110 101 169 139
-13 158 115 140 108
-14 159 116 141 109
-15 110 117 107 142
-16 143 111 160 118
-17 122 145 116 141
-18 123 146 158 108
-19 124 147 161 173
-20 134 125 180 149
-21 135 191 126 162
-22 102 192 119 163
-23 101 178 103 164
-24 115 127 183 153
-25 165 116 128 184
-26 117 161 129 185
-27 132 118 151 130
-28 166 114 119 131
-29 132 182 118 120
-30 121 133 167 186
-31 157 161 129 140
-32 170 151 130 141
-33 115 171 183 142
-34 143 155 116 184
-35 165 187 193 128
-36 144 112 125 172
-37 145 156 158 174
-38 146 159 196 175
-39 188 199 147 160
-40 133 134 167 104
-41 154 189 135 105
-42 102 147 160 106
-43 166 103 107 131
-44 198 179 148 127
-45 180 149 128 120
-46 190 150 129 195
-47 179 148 193 130
-48 187 199 151 131
-49 132 176 155 152
-50 133 177 156 153
-51 154 134 125 175
-52 135 126 117 142
-53 132 155 136 197
-54 133 156 137 194
-55 123 146 169 138
-56 157 168 139 183
-57 187 177 151 153
-58 165 112 104 182
-59 176 161 173 152
-60 198 166 188 127
-61 143 118 129 195
-62 167 193 130 174
-63 200 190 181 150
-64 122 145 168 139
-65 157 159 183 109
-66 115 170 140 184
-67 171 172 185 186
-68 165 189 182 196
-69 111 200 181 160
-70 113 105 172 186
-71 154 114 106 175
-72 192 149 173 195
-73 156 136 150 174
-74 137 148 196 175
-75 113 126 181 152
-76 127 173 195 153
-77 154 176 189 200
-78 198 177 117 185
-79 143 155 178 162
-80 123 179 194 109
-81 157 180 140 163
-82 144 145 158 172
-83 146 159 181 152
-84 192 149 171 142
-85 198 177 180 163
-86 191 182 120 164
-87 176 200 179 194
-88 122 190 108 197
-89 187 178 193 162
-90 191 170 141 164
-91 188 199 169 139
-92 121 190 186 197
-93 111 124 168 138
-94 124 136 147 197
-95 121 144 191 162
-96 199 137 194 131
-97 166 188 167 174
-98 169 170 138 184
-99 178 171 185 164
-100 189 192 163 196
-101 1 12 23 2
-102 22 2 4 42
-103 1 23 3 43
-104 58 4 7 40
-105 1 70 8 41
-106 2 5 71 42
-107 3 15 6 43
-108 88 13 7 18
-109 14 80 8 65
-110 12 2 15 6
-111 3 69 16 93
-112 36 58 4 9
-113 1 70 75 10
-114 11 5 71 28
-115 33 66 13 24
-116 34 14 25 17
-117 78 15 26 52
-118 16 27 61 29
-119 11 22 4 28
-120 45 5 29 86
-121 92 6 95 30
-122 88 17 7 64
-123 55 80 18 8
-124 3 93 94 19
-125 36 51 9 20
-126 52 75 10 21
-127 44 24 60 76
-128 45 35 25 5
-129 46 26 61 31
-130 47 27 62 32
-131 48 28 96 43
-132 27 49 29 53
-133 50 40 30 54
-134 7 40 51 20
-135 8 41 52 21
-136 94 73 9 53
-137 74 96 10 54
-138 11 55 93 98
-139 12 56 91 64
-140 66 13 81 31
-141 90 14 17 32
-142 33 15 84 52
-143 34 79 16 61
-144 36 82 6 95
-145 37 82 17 64
-146 55 38 83 18
-147 39 94 19 42
-148 44 47 74 10
-149 45 72 84 20
-150 46 73 63 9
-151 57 48 27 32
-152 59 49 83 75
-153 24 57 50 76
-154 77 71 51 41
-155 34 79 49 53
-156 37 50 73 54
-157 56 81 31 65
-158 13 37 82 18
-159 14 38 83 65
-160 69 16 39 42
-161 26 59 19 31
-162 89 79 95 21
-163 22 100 81 85
-164 99 23 90 86
-165 35 68 25 58
-166 60 28 97 43
-167 40 62 30 97
-168 11 56 93 64
-169 55 12 91 98
-170 66 90 32 98
-171 33 99 67 84
-172 67 36 70 82
-173 59 72 19 76
-174 37 62 73 97
-175 38 71 51 74
-176 77 59 49 87
-177 78 57 50 85
-178 99 23 89 79
-179 44 47 80 87
-180 45 81 85 20
-181 69 83 63 75
-182 68 58 29 86
-183 33 56 24 65
-184 66 34 25 98
-185 99 67 78 26
-186 67 70 92 30
-187 89 35 57 48
-188 91 60 39 97
-189 77 100 68 41
-190 88 46 92 63
-191 90 95 86 21
-192 22 100 72 84
-193 89 35 47 62
-194 80 96 54 87
-195 46 61 72 76
-196 100 68 38 74
-197 88 92 94 53
-198 44 78 60 85
-199 91 48 39 96
-200 77 69 63 87
0

**************