C4graphGraph forms for C4 [ 200, 34 ] = SDD(C_50(1,7))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 200, 34 ] = SDD(C_50(1,7)).

(I) Following is a form readable by MAGMA:

g:=Graph<200|{ {62, 127}, {60, 126}, {61, 127}, {56, 124}, {57, 125}, {59, 127}, {59, 126}, {57, 126}, {58, 125}, {48, 120}, {49, 121}, {51, 123}, {51, 122}, {53, 124}, {55, 125}, {49, 122}, {50, 121}, {55, 124}, {54, 123}, {52, 122}, {53, 123}, {48, 127}, {32, 112}, {46, 126}, {35, 115}, {33, 113}, {35, 114}, {44, 125}, {37, 116}, {39, 117}, {33, 114}, {40, 123}, {39, 116}, {34, 113}, {38, 115}, {45, 120}, {36, 114}, {42, 124}, {37, 115}, {47, 121}, {32, 119}, {47, 120}, {46, 119}, {34, 120}, {45, 119}, {44, 118}, {38, 122}, {43, 119}, {41, 117}, {40, 116}, {36, 121}, {43, 118}, {41, 118}, {42, 117}, {6, 102}, {8, 104}, {4, 101}, {7, 102}, {5, 103}, {11, 105}, {5, 102}, {18, 113}, {12, 111}, {11, 104}, {1, 101}, {14, 106}, {12, 104}, {13, 104}, {3, 101}, {15, 105}, {1, 102}, {21, 114}, {14, 105}, {9, 110}, {2, 101}, {30, 118}, {28, 117}, {6, 109}, {24, 115}, {10, 103}, {29, 112}, {2, 108}, {31, 113}, {26, 116}, {9, 103}, {8, 103}, {31, 112}, {30, 111}, {28, 110}, {29, 111}, {24, 108}, {27, 111}, {25, 109}, {27, 110}, {25, 110}, {26, 109}, {18, 106}, {20, 108}, {16, 105}, {19, 106}, {17, 107}, {23, 109}, {17, 106}, {23, 108}, {22, 107}, {21, 107}, {15, 112}, {20, 107}, {22, 150}, {39, 167}, {37, 165}, {36, 164}, {50, 178}, {34, 163}, {41, 168}, {39, 166}, {48, 177}, {32, 162}, {43, 169}, {33, 163}, {54, 180}, {37, 166}, {44, 175}, {43, 168}, {38, 165}, {16, 148}, {45, 169}, {44, 168}, {42, 174}, {47, 171}, {26, 159}, {40, 173}, {33, 164}, {47, 170}, {19, 149}, {35, 165}, {25, 159}, {24, 158}, {62, 184}, {35, 164}, {46, 169}, {45, 170}, {52, 179}, {21, 157}, {34, 170}, {23, 159}, {20, 157}, {32, 169}, {23, 158}, {57, 176}, {20, 158}, {38, 172}, {59, 177}, {16, 155}, {22, 157}, {59, 176}, {60, 183}, {17, 157}, {58, 182}, {60, 176}, {61, 177}, {63, 179}, {17, 156}, {42, 167}, {56, 181}, {63, 178}, {18, 156}, {78, 192}, {41, 167}, {40, 166}, {19, 156}, {36, 171}, {61, 178}, {62, 177}, {9, 153}, {82, 194}, {11, 155}, {8, 153}, {80, 193}, {11, 154}, {4, 150}, {86, 196}, {14, 156}, {8, 154}, {3, 144}, {10, 153}, {4, 151}, {3, 151}, {15, 155}, {2, 151}, {14, 155}, {58, 175}, {1, 151}, {94, 200}, {12, 154}, {7, 145}, {56, 174}, {57, 175}, {13, 154}, {84, 195}, {10, 146}, {52, 172}, {53, 173}, {55, 175}, {1, 152}, {89, 192}, {6, 159}, {50, 171}, {55, 174}, {48, 170}, {91, 193}, {49, 171}, {53, 174}, {92, 199}, {91, 192}, {54, 173}, {2, 158}, {95, 195}, {93, 193}, {92, 192}, {90, 198}, {5, 153}, {5, 152}, {95, 194}, {88, 197}, {49, 172}, {6, 152}, {46, 176}, {13, 147}, {51, 173}, {7, 152}, {94, 193}, {93, 194}, {51, 172}, {96, 195}, {100, 199}, {96, 196}, {99, 199}, {98, 198}, {97, 197}, {97, 196}, {99, 198}, {98, 197}, {9, 160}, {100, 200}, {12, 161}, {15, 162}, {18, 163}, {21, 164}, {50, 128}, {54, 130}, {52, 129}, {30, 168}, {62, 134}, {25, 160}, {60, 133}, {27, 161}, {27, 160}, {28, 167}, {56, 131}, {26, 166}, {31, 163}, {29, 161}, {28, 160}, {24, 165}, {31, 162}, {61, 128}, {58, 132}, {63, 129}, {29, 162}, {30, 161}, {63, 128}, {64, 128}, {78, 142}, {65, 129}, {67, 131}, {3, 194}, {67, 130}, {69, 132}, {76, 141}, {71, 133}, {82, 144}, {65, 130}, {66, 129}, {71, 132}, {72, 139}, {7, 195}, {86, 146}, {70, 131}, {84, 145}, {77, 136}, {68, 130}, {79, 137}, {69, 131}, {74, 140}, {64, 135}, {79, 136}, {13, 197}, {94, 150}, {78, 135}, {92, 149}, {66, 136}, {77, 135}, {76, 134}, {88, 147}, {4, 200}, {70, 138}, {72, 132}, {73, 133}, {75, 135}, {68, 137}, {93, 144}, {75, 134}, {10, 196}, {95, 145}, {90, 148}, {73, 134}, {95, 144}, {74, 133}, {94, 143}, {92, 142}, {93, 143}, {19, 199}, {91, 143}, {89, 141}, {88, 140}, {91, 142}, {16, 198}, {89, 142}, {90, 141}, {80, 136}, {83, 139}, {81, 137}, {83, 138}, {85, 140}, {87, 141}, {81, 138}, {87, 140}, {82, 137}, {86, 139}, {22, 200}, {85, 139}, {84, 138}, {80, 143}, {90, 191}, {88, 190}, {89, 191}, {84, 188}, {87, 191}, {85, 189}, {82, 187}, {87, 190}, {80, 186}, {81, 187}, {85, 190}, {86, 189}, {81, 188}, {83, 189}, {83, 188}, {68, 180}, {69, 181}, {71, 183}, {66, 179}, {100, 149}, {98, 147}, {96, 145}, {71, 182}, {73, 184}, {64, 178}, {100, 150}, {97, 147}, {96, 146}, {65, 179}, {75, 185}, {69, 182}, {97, 146}, {76, 191}, {70, 181}, {75, 184}, {74, 190}, {79, 187}, {77, 185}, {76, 184}, {65, 180}, {79, 186}, {72, 189}, {67, 181}, {99, 149}, {98, 148}, {67, 180}, {99, 148}, {78, 185}, {77, 186}, {66, 186}, {64, 185}, {70, 188}, {74, 183}, {72, 182}, {73, 183}, {68, 187} }>;

(II) A more general form is to represent the graph as the orbit of {62, 127} under the group generated by the following permutations:

a: (138, 188)
b: (105, 155)
c: (107, 157)
d: (110, 160)
e: (115, 165)
f: (103, 153)
g: (135, 185)
h: (150, 200)
m: (132, 182)
n1: (1, 2, 23, 6)(3, 20, 26, 5)(4, 24, 25, 7)(8, 82, 17, 40)(9, 95, 22, 37)(10, 93, 21, 39)(11, 68, 14, 54)(12, 81, 19, 51)(13, 79, 18, 53)(15, 67, 16, 65)(27, 84, 100, 38)(28, 96, 94, 35)(29, 70, 99, 52)(30, 83, 92, 49)(31, 56, 98, 66)(32, 69, 90, 63)(33, 42, 97, 80)(34, 55, 88, 77)(36, 41, 86, 91)(43, 72, 89, 50)(44, 85, 78, 47)(45, 58, 87, 64)(46, 71, 76, 61)(48, 57, 74, 75)(59, 60, 73, 62)(101, 108, 109, 102)(103, 144, 107, 116)(104, 137, 106, 123)(105, 130)(110, 145, 150, 115)(111, 138, 149, 122)(112, 131, 148, 129)(113, 124, 147, 136)(114, 117, 146, 143)(118, 139, 142, 121)(119, 132, 141, 128)(120, 125, 140, 135)(126, 133, 134, 127)(151, 158, 159, 152)(153, 194, 157, 166)(154, 187, 156, 173)(155, 180)(160, 195, 200, 165)(161, 188, 199, 172)(162, 181, 198, 179)(163, 174, 197, 186)(164, 167, 196, 193)(168, 189, 192, 171)(169, 182, 191, 178)(170, 175, 190, 185)(176, 183, 184, 177)
a1: (125, 175)
b1: (137, 187)
c1: (127, 177)
d1: (116, 166)
e1: (2, 7)(3, 6)(4, 5)(8, 100)(9, 94)(10, 22)(11, 99)(12, 92)(13, 19)(14, 98)(15, 90)(17, 97)(18, 88)(20, 96)(21, 86)(23, 95)(24, 84)(25, 93)(26, 82)(27, 91)(28, 80)(29, 89)(30, 78)(31, 87)(32, 76)(33, 85)(34, 74)(35, 83)(36, 72)(37, 81)(38, 70)(39, 79)(40, 68)(41, 77)(42, 66)(43, 75)(44, 64)(45, 73)(46, 62)(47, 71)(48, 60)(49, 69)(50, 58)(51, 67)(52, 56)(53, 65)(55, 63)(57, 61)(101, 102)(103, 150)(104, 149)(105, 148)(106, 147)(107, 146)(108, 145)(109, 144)(110, 143)(111, 142)(112, 141)(113, 140)(114, 139)(115, 138)(116, 137)(117, 136)(118, 135)(119, 134)(120, 133)(121, 132)(122, 131)(123, 130)(124, 129)(125, 128)(126, 127)(151, 152)(153, 200)(154, 199)(155, 198)(156, 197)(157, 196)(158, 195)(159, 194)(160, 193)(161, 192)(162, 191)(163, 190)(164, 189)(165, 188)(166, 187)(167, 186)(168, 185)(169, 184)(170, 183)(171, 182)(172, 181)(173, 180)(174, 179)(175, 178)(176, 177)
f1: (124, 174)
g1: (136, 186)
h1: (108, 158)
m1: (139, 189)
n2: (140, 190)
a2: (134, 184)
b2: (104, 154)
c2: (112, 162)
d2: (148, 198)
e2: (142, 192)
f2: (131, 181)
g2: (129, 179)
h2: (128, 178)
m2: (145, 195)
n3: (101, 151)
a3: (146, 196)
b3: (141, 191)
c3: (106, 156)
d3: (111, 161)
e3: (123, 173)
f3: (119, 169)
g3: (144, 194)
h3: (126, 176)
m3: (109, 159)
n4: (121, 171)
a4: (130, 180)
b4: (133, 183)
c4: (147, 197)
d4: (102, 152)
e4: (114, 164)
f4: (122, 172)
g4: (117, 167)
h4: (118, 168)
m4: (149, 199)
n5: (113, 163)
a5: (143, 193)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 200, 34 ]
200
-1 101 102 151 152
-2 101 158 151 108
-3 144 101 194 151
-4 101 200 150 151
-5 102 103 152 153
-6 102 159 152 109
-7 145 102 195 152
-8 154 103 104 153
-9 110 103 160 153
-10 146 103 196 153
-11 154 155 104 105
-12 154 111 104 161
-13 154 147 104 197
-14 155 156 105 106
-15 155 112 105 162
-16 198 155 148 105
-17 156 157 106 107
-18 156 113 106 163
-19 199 156 149 106
-20 157 158 107 108
-21 157 114 107 164
-22 200 157 150 107
-23 158 159 108 109
-24 165 158 115 108
-25 110 159 160 109
-26 166 159 116 109
-27 110 111 160 161
-28 110 167 160 117
-29 111 112 161 162
-30 111 168 161 118
-31 112 113 162 163
-32 112 169 162 119
-33 113 114 163 164
-34 113 170 163 120
-35 165 114 115 164
-36 121 114 171 164
-37 165 166 115 116
-38 165 122 115 172
-39 166 167 116 117
-40 166 123 116 173
-41 167 168 117 118
-42 167 124 117 174
-43 168 169 118 119
-44 168 125 118 175
-45 169 170 119 120
-46 176 169 126 119
-47 121 170 171 120
-48 177 170 127 120
-49 121 122 171 172
-50 121 178 171 128
-51 122 123 172 173
-52 122 179 172 129
-53 123 124 173 174
-54 123 180 173 130
-55 124 125 174 175
-56 124 181 174 131
-57 176 125 126 175
-58 132 125 182 175
-59 176 177 126 127
-60 176 133 126 183
-61 177 178 127 128
-62 177 134 127 184
-63 178 179 128 129
-64 178 135 128 185
-65 179 180 129 130
-66 179 136 129 186
-67 180 181 130 131
-68 187 180 137 130
-69 132 181 182 131
-70 188 181 138 131
-71 132 133 182 183
-72 132 189 182 139
-73 133 134 183 184
-74 133 190 183 140
-75 134 135 184 185
-76 134 191 184 141
-77 135 136 185 186
-78 135 192 185 142
-79 187 136 137 186
-80 143 136 193 186
-81 187 188 137 138
-82 187 144 137 194
-83 188 189 138 139
-84 188 145 138 195
-85 189 190 139 140
-86 189 146 139 196
-87 190 191 140 141
-88 190 147 140 197
-89 191 192 141 142
-90 198 191 148 141
-91 143 192 193 142
-92 199 192 149 142
-93 143 144 193 194
-94 143 200 193 150
-95 144 145 194 195
-96 145 146 195 196
-97 146 147 196 197
-98 198 147 148 197
-99 198 199 148 149
-100 199 200 149 150
-101 1 2 3 4
-102 1 5 6 7
-103 5 8 9 10
-104 11 12 13 8
-105 11 14 15 16
-106 14 17 18 19
-107 22 17 20 21
-108 23 2 24 20
-109 23 25 26 6
-110 25 27 28 9
-111 12 27 29 30
-112 15 29 31 32
-113 33 34 18 31
-114 33 35 36 21
-115 24 35 37 38
-116 26 37 39 40
-117 28 39 41 42
-118 44 30 41 43
-119 45 46 32 43
-120 34 45 47 48
-121 36 47 49 50
-122 38 49 51 52
-123 40 51 53 54
-124 55 56 42 53
-125 44 55 57 58
-126 46 57 59 60
-127 48 59 61 62
-128 50 61 63 64
-129 66 52 63 65
-130 67 68 54 65
-131 56 67 69 70
-132 58 69 71 72
-133 60 71 73 74
-134 62 73 75 76
-135 77 78 64 75
-136 66 77 79 80
-137 68 79 81 82
-138 70 81 83 84
-139 72 83 85 86
-140 88 74 85 87
-141 89 90 76 87
-142 78 89 91 92
-143 80 91 93 94
-144 3 82 93 95
-145 7 84 95 96
-146 96 86 97 10
-147 88 13 97 98
-148 99 90 16 98
-149 99 100 92 19
-150 22 100 4 94
-151 1 2 3 4
-152 1 5 6 7
-153 5 8 9 10
-154 11 12 13 8
-155 11 14 15 16
-156 14 17 18 19
-157 22 17 20 21
-158 23 2 24 20
-159 23 25 26 6
-160 25 27 28 9
-161 12 27 29 30
-162 15 29 31 32
-163 33 34 18 31
-164 33 35 36 21
-165 24 35 37 38
-166 26 37 39 40
-167 28 39 41 42
-168 44 30 41 43
-169 45 46 32 43
-170 34 45 47 48
-171 36 47 49 50
-172 38 49 51 52
-173 40 51 53 54
-174 55 56 42 53
-175 44 55 57 58
-176 46 57 59 60
-177 48 59 61 62
-178 50 61 63 64
-179 66 52 63 65
-180 67 68 54 65
-181 56 67 69 70
-182 58 69 71 72
-183 60 71 73 74
-184 62 73 75 76
-185 77 78 64 75
-186 66 77 79 80
-187 68 79 81 82
-188 70 81 83 84
-189 72 83 85 86
-190 88 74 85 87
-191 89 90 76 87
-192 78 89 91 92
-193 80 91 93 94
-194 3 82 93 95
-195 7 84 95 96
-196 96 86 97 10
-197 88 13 97 98
-198 99 90 16 98
-199 99 100 92 19
-200 22 100 4 94
0

**************