[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 200, 36 ] =
BGCG({4,4}_5,5;K2;{7,9}).
(I) Following is a form readable by MAGMA:
g:=Graph<200|{ {100, 110}, {99, 110}, {100, 105}, {96, 112}, {96, 113}, {99,
114}, {98, 123}, {75, 107}, {70, 103}, {74, 107}, {95, 124}, {94, 122}, {80,
119}, {93, 122}, {90, 125}, {86, 113}, {69, 109}, {67, 104}, {89, 114}, {70,
109}, {78, 101}, {81, 125}, {66, 111}, {90, 119}, {75, 102}, {65, 111}, {87,
120}, {95, 112}, {66, 115}, {77, 127}, {85, 102}, {90, 105}, {77, 120}, {93,
106}, {64, 121}, {83, 106}, {79, 117}, {78, 117}, {67, 127}, {88, 101}, {38,
102}, {49, 113}, {54, 118}, {60, 124}, {46, 111}, {53, 116}, {40, 106}, {45,
111}, {43, 105}, {60, 126}, {53, 118}, {35, 101}, {63, 121}, {33, 105}, {56,
115}, {63, 116}, {48, 124}, {51, 126}, {53, 123}, {40, 120}, {60, 108}, {57,
104}, {37, 119}, {43, 121}, {44, 121}, {36, 114}, {45, 123}, {40, 126}, {39,
113}, {59, 108}, {50, 106}, {60, 103}, {46, 114}, {49, 109}, {50, 109}, {7,
103}, {16, 112}, {10, 107}, {31, 126}, {9, 107}, {10, 104}, {16, 116}, {30,
120}, {24, 127}, {28, 118}, {29, 118}, {27, 119}, {3, 115}, {4, 117}, {14, 127},
{10, 123}, {6, 116}, {14, 122}, {24, 108}, {25, 108}, {3, 117}, {17, 103}, {10,
125}, {13, 122}, {20, 110}, {28, 102}, {1, 125}, {25, 101}, {20, 104}, {19,
110}, {13, 115}, {3, 124}, {15, 112}, {48, 176}, {62, 190}, {25, 152}, {68,
197}, {71, 198}, {12, 142}, {39, 165}, {26, 152}, {23, 149}, {18, 144}, {15,
141}, {19, 144}, {32, 164}, {47, 171}, {30, 155}, {46, 171}, {29, 155}, {59,
189}, {1, 134}, {6, 129}, {61, 181}, {64, 200}, {13, 132}, {42, 160}, {52, 190},
{9, 130}, {78, 197}, {52, 184}, {6, 139}, {40, 165}, {24, 149}, {8, 133}, {53,
184}, {5, 139}, {63, 177}, {62, 177}, {23, 135}, {42, 186}, {17, 128}, {43,
186}, {36, 181}, {51, 162}, {81, 192}, {8, 154}, {30, 140}, {26, 136}, {24,
138}, {9, 154}, {32, 179}, {23, 132}, {58, 169}, {25, 141}, {37, 177}, {58,
174}, {31, 137}, {87, 193}, {41, 191}, {35, 181}, {52, 162}, {54, 160}, {20,
131}, {86, 193}, {38, 177}, {35, 180}, {57, 174}, {5, 157}, {32, 184}, {22,
142}, {11, 147}, {4, 157}, {45, 180}, {42, 179}, {33, 184}, {21, 140}, {4, 159},
{91, 192}, {27, 128}, {21, 137}, {39, 187}, {32, 188}, {30, 131}, {55, 170},
{12, 147}, {47, 176}, {1, 161}, {31, 191}, {8, 170}, {27, 185}, {20, 182}, {59,
153}, {2, 161}, {58, 153}, {8, 173}, {97, 196}, {28, 185}, {50, 151}, {15, 169},
{48, 150}, {33, 135}, {29, 187}, {57, 159}, {7, 160}, {100, 195}, {49, 150},
{14, 166}, {46, 134}, {41, 129}, {34, 138}, {54, 158}, {15, 166}, {55, 158},
{61, 148}, {7, 173}, {22, 188}, {62, 148}, {5, 169}, {36, 136}, {19, 190}, {34,
143}, {33, 143}, {49, 159}, {44, 130}, {43, 133}, {34, 146}, {44, 156}, {12,
189}, {45, 156}, {17, 163}, {26, 168}, {16, 163}, {62, 141}, {3, 183}, {37,
145}, {19, 167}, {56, 140}, {2, 183}, {51, 133}, {9, 190}, {16, 168}, {26, 162},
{22, 174}, {18, 170}, {21, 172}, {27, 162}, {23, 174}, {22, 172}, {29, 167},
{56, 130}, {59, 129}, {31, 164}, {55, 140}, {34, 158}, {58, 134}, {63, 131},
{11, 182}, {41, 148}, {35, 158}, {18, 175}, {12, 178}, {47, 145}, {44, 146},
{42, 148}, {41, 151}, {39, 153}, {17, 175}, {2, 189}, {38, 153}, {13, 178}, {64,
128}, {2, 195}, {5, 196}, {73, 136}, {70, 132}, {88, 154}, {4, 199}, {99, 160},
{92, 159}, {91, 152}, {89, 154}, {83, 144}, {11, 200}, {74, 137}, {84, 144},
{95, 155}, {72, 141}, {94, 155}, {87, 146}, {84, 145}, {75, 142}, {7, 193}, {6,
193}, {85, 157}, {91, 147}, {1, 200}, {84, 157}, {14, 199}, {69, 143}, {73,
131}, {74, 128}, {68, 143}, {76, 135}, {71, 139}, {96, 172}, {80, 156}, {71,
138}, {98, 175}, {97, 172}, {11, 197}, {97, 175}, {65, 142}, {94, 145}, {92,
147}, {21, 197}, {86, 135}, {79, 156}, {18, 198}, {80, 132}, {91, 130}, {28,
198}, {76, 151}, {93, 134}, {83, 136}, {80, 139}, {81, 138}, {74, 150}, {75,
151}, {84, 137}, {98, 191}, {73, 150}, {94, 129}, {86, 182}, {72, 171}, {85,
182}, {65, 165}, {93, 185}, {83, 183}, {73, 173}, {64, 165}, {96, 133}, {92,
185}, {89, 188}, {87, 178}, {66, 167}, {72, 173}, {82, 183}, {36, 194}, {85,
179}, {38, 192}, {66, 164}, {82, 180}, {37, 194}, {88, 191}, {67, 164}, {79,
168}, {92, 180}, {82, 187}, {88, 178}, {65, 170}, {76, 167}, {47, 195}, {95,
179}, {71, 171}, {77, 161}, {68, 169}, {69, 168}, {76, 161}, {48, 192}, {52,
196}, {82, 163}, {81, 163}, {67, 176}, {97, 146}, {70, 181}, {72, 187}, {79,
188}, {51, 199}, {55, 195}, {68, 176}, {78, 186}, {50, 196}, {99, 149}, {77,
186}, {98, 149}, {69, 189}, {56, 194}, {61, 199}, {57, 194}, {61, 198}, {90,
166}, {100, 152}, {54, 200}, {89, 166} }>;
(II) A more general form is to represent the graph as the orbit of {100, 110}
under the group generated by the following permutations:
a: (2, 81)(3, 16)(4, 96)(5, 21)(6, 56)(7, 36)(8, 61)(9, 41)(10, 76)(11, 58)(12,
38)(13, 63)(14, 43)(15, 78)(17, 83)(19, 98)(20, 23)(22, 85)(24, 100)(26, 60)(27,
40)(28, 65)(29, 45)(30, 80)(31, 52)(33, 67)(34, 47)(35, 72)(37, 87)(39, 92)(42,
89)(44, 94)(46, 54)(48, 69)(50, 74)(53, 66)(55, 71)(57, 86)(59, 91)(62, 88)(64,
93)(70, 73)(77, 90)(79, 95)(84, 97)(101, 141)(102, 142)(103, 136)(104, 135)(105,
127)(106, 128)(107, 151)(108, 152)(109, 150)(110, 149)(111, 118)(112, 117)(113,
159)(114, 160)(115, 116)(119, 120)(121, 122)(123, 167)(124, 168)(125, 161)(126,
162)(129, 130)(131, 132)(133, 199)(134, 200)(137, 196)(138, 195)(139, 140)(143,
176)(144, 175)(145, 146)(147, 153)(148, 154)(155, 156)(157, 172)(158, 171)(163,
183)(164, 184)(165, 185)(166, 186)(169, 197)(170, 198)(173, 181)(174, 182)(177,
178)(179, 188)(180, 187)(189, 192)(190, 191)(193, 194) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 11, 10, 46)(3, 21, 9, 36)(4, 31, 8, 26)(5, 41, 7, 16)(12, 20, 45, 47)(13,
30, 44, 37)(14, 40, 43, 27)(15, 50, 42, 17)(18, 25, 49, 32)(19, 35, 48, 22)(23,
29, 34, 38)(24, 39, 33, 28)(52, 61, 60, 96)(53, 71, 59, 86)(54, 81, 58, 76)(55,
91, 57, 66)(62, 70, 95, 97)(63, 80, 94, 87)(64, 90, 93, 77)(65, 100, 92, 67)(68,
75, 99, 82)(69, 85, 98, 72)(73, 79, 84, 88)(74, 89, 83, 78)(101, 150, 188,
144)(102, 149, 187, 143)(103, 112, 196, 148)(104, 111, 195, 147)(105, 185, 127,
165)(106, 186, 128, 166)(107, 114, 183, 197)(108, 113, 184, 198)(109, 179, 175,
141)(110, 180, 176, 142)(115, 140, 130, 194)(116, 139, 129, 193)(117, 137, 154,
136)(118, 138, 153, 135)(119, 122, 120, 121)(123, 171, 189, 182)(124, 172, 190,
181)(125, 134, 161, 200)(126, 133, 162, 199)(131, 156, 145, 178)(132, 155, 146,
177)(151, 160, 163, 169)(152, 159, 164, 170)(157, 191, 173, 168)(158, 192, 174,
167)
c: (1, 2)(3, 10)(4, 9)(5, 8)(6, 7)(11, 12)(13, 20)(14, 19)(15, 18)(16, 17)(21,
22)(23, 30)(24, 29)(25, 28)(26, 27)(31, 32)(33, 40)(34, 39)(35, 38)(36, 37)(41,
42)(43, 50)(44, 49)(45, 48)(46, 47)(51, 52)(53, 60)(54, 59)(55, 58)(56, 57)(61,
62)(63, 70)(64, 69)(65, 68)(66, 67)(71, 72)(73, 80)(74, 79)(75, 78)(76, 77)(81,
82)(83, 90)(84, 89)(85, 88)(86, 87)(91, 92)(93, 100)(94, 99)(95, 98)(96,
97)(101, 102)(103, 116)(104, 115)(105, 106)(107, 117)(108, 118)(109, 121)(110,
122)(111, 176)(112, 175)(113, 146)(114, 145)(119, 136)(120, 135)(123, 124)(125,
183)(126, 184)(127, 167)(128, 168)(129, 160)(130, 159)(131, 132)(133, 196)(134,
195)(137, 188)(138, 187)(139, 173)(140, 174)(141, 198)(142, 197)(143, 165)(144,
166)(149, 155)(150, 156)(151, 186)(152, 185)(153, 158)(154, 157)(169, 170)(177,
181)(178, 182)(179, 191)(180, 192)(189, 200)(190, 199)
C4[ 200, 36 ]
200
-1 134 200 125 161
-2 189 161 183 195
-3 124 115 117 183
-4 199 157 159 117
-5 157 169 139 196
-6 116 193 139 129
-7 103 160 193 173
-8 154 133 170 173
-9 154 190 107 130
-10 123 125 104 107
-11 200 147 182 197
-12 178 189 147 142
-13 132 122 178 115
-14 122 166 199 127
-15 166 112 169 141
-16 112 168 116 163
-17 103 128 163 175
-18 198 144 170 175
-19 110 144 167 190
-20 110 104 182 131
-21 137 172 140 197
-22 188 172 174 142
-23 132 135 149 174
-24 127 138 149 108
-25 101 108 141 152
-26 168 136 162 152
-27 128 162 119 185
-28 198 102 118 185
-29 187 155 167 118
-30 155 140 120 131
-31 191 126 137 164
-32 188 179 184 164
-33 143 135 105 184
-34 143 146 158 138
-35 101 158 180 181
-36 114 136 181 194
-37 177 145 194 119
-38 177 102 192 153
-39 165 187 113 153
-40 165 126 106 120
-41 191 148 129 151
-42 179 148 160 186
-43 121 133 105 186
-44 121 156 146 130
-45 111 123 156 180
-46 111 134 114 171
-47 176 145 171 195
-48 176 124 192 150
-49 113 159 150 109
-50 106 151 196 109
-51 133 199 126 162
-52 190 162 184 196
-53 123 116 118 184
-54 200 158 160 118
-55 158 170 140 195
-56 115 194 140 130
-57 104 159 194 174
-58 134 169 174 153
-59 189 129 108 153
-60 124 103 126 108
-61 198 199 148 181
-62 177 190 148 141
-63 121 177 116 131
-64 121 165 200 128
-65 165 111 170 142
-66 111 167 115 164
-67 176 104 127 164
-68 143 176 169 197
-69 143 189 168 109
-70 132 103 181 109
-71 198 138 171 139
-72 187 171 173 141
-73 136 150 173 131
-74 137 128 150 107
-75 102 107 151 142
-76 167 135 161 151
-77 127 161 120 186
-78 101 117 186 197
-79 188 156 168 117
-80 132 156 139 119
-81 125 192 138 163
-82 187 180 183 163
-83 144 136 106 183
-84 144 145 157 137
-85 102 157 179 182
-86 113 135 182 193
-87 178 146 193 120
-88 154 101 178 191
-89 154 166 188 114
-90 166 125 105 119
-91 147 192 130 152
-92 147 180 159 185
-93 122 134 106 185
-94 122 155 145 129
-95 155 112 124 179
-96 133 112 113 172
-97 146 172 196 175
-98 123 191 149 175
-99 110 114 149 160
-100 110 105 195 152
-101 88 78 35 25
-102 38 28 85 75
-103 70 60 17 7
-104 67 57 20 10
-105 33 100 90 43
-106 93 50 83 40
-107 74 9 75 10
-108 24 25 59 60
-109 69 70 49 50
-110 99 100 19 20
-111 66 45 46 65
-112 15 16 95 96
-113 49 39 96 86
-114 99 89 46 36
-115 66 56 13 3
-116 16 6 63 53
-117 78 79 3 4
-118 28 29 53 54
-119 90 80 37 27
-120 77 40 30 87
-121 44 63 64 43
-122 13 14 93 94
-123 45 53 10 98
-124 3 48 60 95
-125 1 90 81 10
-126 60 40 51 31
-127 77 67 24 14
-128 27 17 74 64
-129 59 6 94 41
-130 44 56 91 9
-131 73 30 63 20
-132 23 13 80 70
-133 51 8 96 43
-134 1 46 58 93
-135 33 23 86 76
-136 36 26 83 73
-137 84 74 31 21
-138 34 24 81 71
-139 80 5 71 6
-140 55 56 30 21
-141 25 15 72 62
-142 22 12 75 65
-143 33 34 68 69
-144 83 18 84 19
-145 47 37 94 84
-146 44 34 97 87
-147 11 12 91 92
-148 61 62 41 42
-149 99 23 24 98
-150 48 49 73 74
-151 50 41 75 76
-152 100 25 91 26
-153 58 59 38 39
-154 88 89 8 9
-155 94 29 95 30
-156 44 45 79 80
-157 4 5 84 85
-158 55 34 35 54
-159 57 4 92 49
-160 99 7 42 54
-161 77 1 2 76
-162 26 27 51 52
-163 81 16 82 17
-164 66 67 31 32
-165 39 40 64 65
-166 89 90 14 15
-167 66 29 19 76
-168 79 69 26 16
-169 68 58 15 5
-170 55 18 8 65
-171 46 47 71 72
-172 22 96 97 21
-173 72 7 73 8
-174 22 23 57 58
-175 17 18 97 98
-176 67 68 47 48
-177 37 38 62 63
-178 88 12 13 87
-179 95 85 42 32
-180 45 35 92 82
-181 35 36 70 61
-182 11 85 20 86
-183 2 3 82 83
-184 33 52 53 32
-185 92 27 93 28
-186 77 78 42 43
-187 82 39 72 29
-188 22 89 79 32
-189 12 2 69 59
-190 62 19 52 9
-191 88 41 31 98
-192 91 48 81 38
-193 6 7 86 87
-194 56 57 36 37
-195 55 100 2 47
-196 5 50 52 97
-197 11 78 68 21
-198 71 28 61 18
-199 14 4 61 51
-200 11 1 64 54
0