[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 200, 37 ] =
SDD(PS(10,5;2)).
(I) Following is a form readable by MAGMA:
g:=Graph<200|{ {64, 127}, {62, 126}, {63, 127}, {60, 125}, {56, 123}, {61, 126},
{57, 124}, {59, 126}, {58, 124}, {59, 125}, {48, 119}, {55, 127}, {49, 120},
{50, 123}, {48, 122}, {50, 120}, {51, 121}, {49, 122}, {53, 126}, {51, 127},
{54, 122}, {55, 123}, {52, 121}, {32, 111}, {53, 122}, {33, 112}, {44, 125},
{34, 112}, {41, 123}, {35, 113}, {36, 119}, {46, 125}, {39, 116}, {37, 118},
{34, 118}, {45, 121}, {39, 115}, {38, 114}, {33, 116}, {36, 113}, {35, 117},
{47, 121}, {42, 124}, {37, 114}, {43, 124}, {32, 120}, {47, 119}, {46, 118},
{44, 117}, {40, 115}, {45, 118}, {41, 116}, {38, 120}, {43, 117}, {42, 116},
{40, 119}, {6, 102}, {14, 110}, {4, 101}, {13, 108}, {7, 102}, {9, 107}, {5,
102}, {1, 101}, {22, 114}, {21, 113}, {13, 104}, {23, 114}, {3, 101}, {14, 104},
{2, 101}, {15, 104}, {10, 109}, {26, 115}, {1, 107}, {31, 117}, {6, 108}, {12,
103}, {24, 115}, {2, 110}, {28, 112}, {11, 103}, {10, 103}, {29, 112}, {8, 102},
{9, 103}, {5, 106}, {30, 113}, {30, 110}, {31, 111}, {28, 109}, {24, 107}, {29,
110}, {27, 111}, {25, 108}, {25, 111}, {27, 109}, {26, 108}, {16, 104}, {17,
105}, {19, 105}, {17, 106}, {18, 105}, {22, 106}, {23, 107}, {20, 105}, {18,
109}, {21, 106}, {19, 147}, {35, 163}, {34, 162}, {20, 148}, {52, 180}, {32,
161}, {46, 175}, {40, 169}, {39, 166}, {37, 164}, {38, 164}, {39, 165}, {51,
177}, {16, 147}, {44, 175}, {33, 162}, {28, 159}, {26, 158}, {47, 171}, {42,
174}, {41, 173}, {35, 167}, {27, 159}, {54, 178}, {24, 157}, {45, 168}, {43,
174}, {53, 176}, {45, 171}, {47, 169}, {46, 168}, {55, 177}, {62, 184}, {25,
158}, {36, 163}, {33, 166}, {63, 184}, {19, 155}, {18, 155}, {21, 156}, {16,
154}, {34, 168}, {32, 170}, {23, 157}, {22, 156}, {17, 155}, {61, 183}, {44,
167}, {56, 179}, {57, 178}, {59, 176}, {38, 170}, {43, 167}, {42, 166}, {17,
156}, {40, 165}, {37, 168}, {36, 169}, {18, 159}, {61, 176}, {58, 180}, {62,
176}, {63, 177}, {20, 155}, {41, 166}, {60, 179}, {8, 152}, {82, 194}, {81,
193}, {9, 153}, {4, 149}, {83, 194}, {7, 149}, {11, 153}, {4, 151}, {13, 158},
{10, 153}, {60, 175}, {3, 151}, {92, 200}, {14, 154}, {9, 157}, {58, 174}, {59,
175}, {2, 151}, {86, 195}, {15, 154}, {12, 153}, {10, 159}, {56, 173}, {1, 151},
{3, 148}, {84, 195}, {13, 154}, {57, 174}, {6, 158}, {94, 198}, {88, 192}, {50,
170}, {51, 171}, {5, 156}, {93, 196}, {89, 192}, {11, 146}, {48, 169}, {53,
172}, {12, 150}, {95, 197}, {54, 172}, {55, 173}, {49, 170}, {90, 193}, {1,
157}, {48, 172}, {5, 152}, {93, 192}, {15, 146}, {49, 172}, {6, 152}, {95, 193},
{94, 192}, {91, 197}, {8, 150}, {7, 152}, {50, 173}, {52, 171}, {98, 194}, {99,
195}, {96, 193}, {2, 160}, {97, 194}, {100, 199}, {96, 199}, {100, 195}, {99,
196}, {97, 198}, {98, 200}, {14, 160}, {22, 164}, {23, 164}, {21, 163}, {52,
130}, {54, 128}, {25, 161}, {31, 167}, {58, 130}, {61, 133}, {62, 134}, {56,
129}, {57, 128}, {63, 134}, {27, 161}, {24, 165}, {30, 163}, {29, 160}, {60,
129}, {28, 162}, {31, 161}, {30, 160}, {26, 165}, {29, 162}, {7, 199}, {8, 200},
{67, 131}, {68, 132}, {74, 138}, {65, 128}, {69, 132}, {73, 136}, {65, 131},
{82, 144}, {78, 140}, {66, 128}, {67, 129}, {75, 137}, {4, 199}, {83, 144}, {70,
133}, {12, 200}, {70, 130}, {71, 131}, {72, 140}, {3, 198}, {84, 145}, {66,
135}, {68, 129}, {64, 135}, {86, 145}, {79, 136}, {77, 138}, {76, 139}, {69,
130}, {78, 134}, {91, 147}, {79, 135}, {76, 133}, {92, 150}, {94, 148}, {15,
196}, {77, 134}, {72, 131}, {95, 147}, {73, 132}, {71, 137}, {74, 132}, {75,
133}, {11, 196}, {93, 146}, {94, 142}, {95, 143}, {92, 141}, {20, 198}, {88,
139}, {93, 142}, {16, 197}, {90, 143}, {89, 140}, {19, 197}, {91, 141}, {90,
140}, {88, 142}, {80, 135}, {89, 142}, {85, 141}, {81, 136}, {82, 136}, {87,
141}, {83, 137}, {80, 139}, {86, 138}, {87, 139}, {84, 137}, {81, 143}, {85,
138}, {92, 191}, {90, 190}, {91, 191}, {88, 189}, {89, 190}, {82, 186}, {87,
191}, {83, 187}, {80, 185}, {85, 188}, {85, 191}, {87, 189}, {86, 188}, {81,
186}, {80, 189}, {84, 187}, {96, 143}, {66, 178}, {78, 190}, {75, 187}, {67,
179}, {64, 177}, {100, 149}, {99, 146}, {97, 144}, {77, 188}, {76, 189}, {69,
180}, {70, 183}, {68, 182}, {99, 145}, {98, 144}, {70, 180}, {71, 181}, {65,
178}, {69, 182}, {73, 186}, {65, 181}, {98, 150}, {77, 184}, {100, 145}, {97,
148}, {96, 149}, {79, 186}, {67, 181}, {79, 185}, {78, 184}, {72, 190}, {74,
188}, {68, 179}, {64, 185}, {66, 185}, {76, 183}, {71, 187}, {75, 183}, {74,
182}, {72, 181}, {73, 182} }>;
(II) A more general form is to represent the graph as the orbit of {64, 127}
under the group generated by the following permutations:
a: (138, 188) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (105, 155)
c: (107, 157)
d: (110, 160)
e: (115, 165)
f: (103, 153)
g: (135, 185)
h: (150, 200)
m: (132, 182)
n1: (2, 9)(3, 24)(4, 23)(6, 17)(7, 22)(8, 21)(10, 14)(11, 29)(12, 30)(13,
18)(15, 28)(16, 27)(19, 25)(20, 26)(31, 91)(32, 95)(33, 93)(34, 99)(35, 92)(36,
98)(37, 100)(38, 96)(39, 94)(40, 97)(41, 89)(42, 88)(43, 87)(44, 85)(45, 84)(46,
86)(47, 83)(48, 82)(49, 81)(50, 90)(51, 71)(52, 75)(53, 73)(54, 79)(55, 72)(56,
78)(57, 80)(58, 76)(59, 74)(60, 77)(61, 69)(62, 68)(63, 67)(64, 65)(101,
107)(102, 106)(103, 110)(104, 109)(105, 108)(111, 147)(112, 146)(113, 150)(114,
149)(115, 148)(116, 142)(117, 141)(118, 145)(119, 144)(120, 143)(121, 137)(122,
136)(123, 140)(124, 139)(125, 138)(126, 132)(127, 131)(128, 135)(129, 134)(130,
133)(151, 157)(152, 156)(153, 160)(154, 159)(155, 158)(161, 197)(162, 196)(163,
200)(164, 199)(165, 198)(166, 192)(167, 191)(168, 195)(169, 194)(170, 193)(171,
187)(172, 186)(173, 190)(174, 189)(175, 188)(176, 182)(177, 181)(178, 185)(179,
184)(180, 183)
a1: (125, 175)
b1: (137, 187)
c1: (116, 166)
d1: (124, 174)
e1: (136, 186)
f1: (108, 158)
g1: (139, 189)
h1: (140, 190)
m1: (134, 184)
n2: (104, 154)
a2: (1, 3, 97, 83, 71, 65, 57, 43, 31, 25, 13, 16, 91, 85, 77, 63, 51, 45, 37,
23)(2, 20, 98, 84, 72, 66, 58, 44, 32, 26, 14, 19, 92, 86, 78, 64, 52, 46, 38,
24)(4, 94, 82, 75, 67, 54, 42, 35, 27, 6, 15, 95, 87, 74, 62, 55, 47, 34, 22,
9)(5, 11, 96, 88, 73, 61, 56, 48, 33, 21, 10, 7, 93, 81, 76, 68, 53, 41, 36,
28)(8, 99, 90, 80, 69, 59, 50, 40, 29, 17, 12, 100, 89, 79, 70, 60, 49, 39, 30,
18)(101, 148, 144, 137, 131, 128, 124, 117, 111, 108, 104, 147, 141, 138, 134,
127, 121, 118, 114, 107)(102, 146, 143, 139, 132, 126, 123, 119, 112, 106, 103,
149, 142, 136, 133, 129, 122, 116, 113, 109)(105, 150, 145, 140, 135, 130, 125,
120, 115, 110)(151, 198, 194, 187, 181, 178, 174, 167, 161, 158, 154, 197, 191,
188, 184, 177, 171, 168, 164, 157)(152, 196, 193, 189, 182, 176, 173, 169, 162,
156, 153, 199, 192, 186, 183, 179, 172, 166, 163, 159)(155, 200, 195, 190, 185,
180, 175, 170, 165, 160)
b2: (112, 162)
c2: (120, 170)
d2: (148, 198)
e2: (142, 192)
f2: (131, 181)
g2: (129, 179)
h2: (128, 178)
m2: (145, 195)
n3: (101, 151)
a3: (146, 196)
b3: (1, 2)(3, 4)(5, 17)(6, 18)(7, 20)(8, 19)(9, 14)(10, 13)(11, 15)(12, 16)(21,
22)(23, 30)(24, 29)(25, 27)(26, 28)(31, 32)(33, 39)(34, 40)(35, 38)(36, 37)(41,
42)(43, 50)(44, 49)(45, 47)(46, 48)(51, 52)(53, 59)(54, 60)(55, 58)(56, 57)(61,
62)(63, 70)(64, 69)(65, 67)(66, 68)(71, 72)(73, 79)(74, 80)(75, 78)(76, 77)(81,
82)(83, 90)(84, 89)(85, 87)(86, 88)(91, 92)(93, 99)(94, 100)(95, 98)(96,
97)(102, 105)(103, 104)(107, 110)(108, 109)(112, 115)(113, 114)(117, 120)(118,
119)(122, 125)(123, 124)(127, 130)(128, 129)(132, 135)(133, 134)(137, 140)(138,
139)(142, 145)(143, 144)(147, 150)(148, 149)(152, 155)(153, 154)(157, 160)(158,
159)(162, 165)(163, 164)(167, 170)(168, 169)(172, 175)(173, 174)(177, 180)(178,
179)(182, 185)(183, 184)(187, 190)(188, 189)(192, 195)(193, 194)(197, 200)(198,
199)
c3: (141, 191)
d3: (106, 156)
e3: (111, 161)
f3: (123, 173)
g3: (119, 169)
h3: (144, 194)
m3: (126, 176)
n4: (109, 159)
a4: (121, 171)
b4: (130, 180)
c4: (133, 183)
d4: (147, 197)
e4: (102, 152)
f4: (114, 164)
g4: (122, 172)
h4: (118, 168)
m4: (117, 167)
n5: (149, 199)
a5: (113, 163)
b5: (143, 193)
C4[ 200, 37 ]
200
-1 101 157 107 151
-2 110 101 160 151
-3 198 101 148 151
-4 199 101 149 151
-5 156 102 106 152
-6 102 158 108 152
-7 199 102 149 152
-8 200 102 150 152
-9 157 103 107 153
-10 103 159 109 153
-11 146 103 196 153
-12 200 103 150 153
-13 154 158 104 108
-14 110 154 104 160
-15 154 146 104 196
-16 154 147 104 197
-17 155 156 105 106
-18 155 159 105 109
-19 155 147 105 197
-20 198 155 148 105
-21 156 113 106 163
-22 156 114 106 164
-23 157 114 107 164
-24 165 157 115 107
-25 111 158 161 108
-26 165 158 115 108
-27 111 159 161 109
-28 112 159 162 109
-29 110 112 160 162
-30 110 113 160 163
-31 111 167 117 161
-32 111 170 161 120
-33 166 112 116 162
-34 112 168 118 162
-35 167 113 117 163
-36 113 169 119 163
-37 168 114 118 164
-38 114 170 120 164
-39 165 166 115 116
-40 165 169 115 119
-41 166 123 116 173
-42 166 124 116 174
-43 167 124 117 174
-44 167 125 117 175
-45 121 168 171 118
-46 168 125 118 175
-47 121 169 171 119
-48 122 169 172 119
-49 122 170 172 120
-50 123 170 173 120
-51 121 177 127 171
-52 121 180 171 130
-53 176 122 126 172
-54 122 178 128 172
-55 177 123 127 173
-56 123 179 129 173
-57 178 124 128 174
-58 124 180 130 174
-59 176 125 126 175
-60 179 125 129 175
-61 176 133 126 183
-62 176 134 126 184
-63 177 134 127 184
-64 177 135 127 185
-65 178 181 128 131
-66 178 135 128 185
-67 179 181 129 131
-68 132 179 182 129
-69 132 180 182 130
-70 133 180 183 130
-71 187 137 181 131
-72 190 181 140 131
-73 132 136 182 186
-74 132 188 138 182
-75 187 133 137 183
-76 133 189 139 183
-77 188 134 138 184
-78 134 190 140 184
-79 135 136 185 186
-80 189 135 139 185
-81 143 136 193 186
-82 144 136 194 186
-83 187 144 137 194
-84 187 145 137 195
-85 188 191 138 141
-86 188 145 138 195
-87 189 191 139 141
-88 189 192 139 142
-89 190 192 140 142
-90 143 190 193 140
-91 147 191 141 197
-92 200 191 150 141
-93 146 192 196 142
-94 198 148 192 142
-95 143 147 193 197
-96 143 199 149 193
-97 198 144 148 194
-98 144 200 150 194
-99 145 146 195 196
-100 199 145 149 195
-101 1 2 3 4
-102 5 6 7 8
-103 11 12 9 10
-104 13 14 15 16
-105 17 18 19 20
-106 22 5 17 21
-107 1 23 24 9
-108 13 25 26 6
-109 27 28 18 10
-110 2 14 29 30
-111 25 27 31 32
-112 33 34 28 29
-113 35 36 30 21
-114 22 23 37 38
-115 24 26 39 40
-116 33 39 41 42
-117 44 35 31 43
-118 34 45 46 37
-119 36 47 48 40
-120 38 49 50 32
-121 45 47 51 52
-122 48 49 53 54
-123 55 56 50 41
-124 57 58 42 43
-125 44 46 59 60
-126 59 61 62 53
-127 55 51 63 64
-128 66 57 54 65
-129 56 67 68 60
-130 58 69 70 52
-131 67 71 72 65
-132 68 69 73 74
-133 70 61 75 76
-134 77 78 62 63
-135 66 79 80 64
-136 79 81 82 73
-137 71 83 84 75
-138 77 74 85 86
-139 88 80 76 87
-140 78 89 90 72
-141 91 92 85 87
-142 88 89 93 94
-143 90 81 95 96
-144 82 83 97 98
-145 99 100 84 86
-146 11 99 15 93
-147 91 16 95 19
-148 3 94 20 97
-149 100 4 7 96
-150 12 92 8 98
-151 1 2 3 4
-152 5 6 7 8
-153 11 12 9 10
-154 13 14 15 16
-155 17 18 19 20
-156 22 5 17 21
-157 1 23 24 9
-158 13 25 26 6
-159 27 28 18 10
-160 2 14 29 30
-161 25 27 31 32
-162 33 34 28 29
-163 35 36 30 21
-164 22 23 37 38
-165 24 26 39 40
-166 33 39 41 42
-167 44 35 31 43
-168 34 45 46 37
-169 36 47 48 40
-170 38 49 50 32
-171 45 47 51 52
-172 48 49 53 54
-173 55 56 50 41
-174 57 58 42 43
-175 44 46 59 60
-176 59 61 62 53
-177 55 51 63 64
-178 66 57 54 65
-179 56 67 68 60
-180 58 69 70 52
-181 67 71 72 65
-182 68 69 73 74
-183 70 61 75 76
-184 77 78 62 63
-185 66 79 80 64
-186 79 81 82 73
-187 71 83 84 75
-188 77 74 85 86
-189 88 80 76 87
-190 78 89 90 72
-191 91 92 85 87
-192 88 89 93 94
-193 90 81 95 96
-194 82 83 97 98
-195 99 100 84 86
-196 11 99 15 93
-197 91 16 95 19
-198 3 94 20 97
-199 100 4 7 96
-200 12 92 8 98
0