C4graphGraph forms for C4 [ 200, 38 ] = BGCG({4,4}_10,0;K1;{12,14})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 200, 38 ] = BGCG({4,4}_10,0;K1;{12,14}).

(I) Following is a form readable by MAGMA:

g:=Graph<200|{ {97, 104}, {97, 107}, {100, 104}, {99, 122}, {70, 103}, {78, 111}, {79, 108}, {67, 103}, {86, 114}, {72, 108}, {87, 114}, {92, 122}, {74, 109}, {71, 111}, {71, 109}, {89, 115}, {68, 111}, {88, 115}, {73, 101}, {80, 126}, {74, 101}, {71, 118}, {87, 102}, {90, 110}, {89, 108}, {94, 107}, {73, 126}, {65, 121}, {68, 124}, {70, 126}, {64, 121}, {84, 109}, {64, 123}, {81, 109}, {87, 107}, {85, 105}, {65, 124}, {84, 105}, {67, 125}, {88, 102}, {72, 118}, {82, 108}, {66, 125}, {81, 110}, {84, 107}, {49, 113}, {48, 113}, {49, 112}, {63, 126}, {46, 106}, {47, 106}, {57, 127}, {58, 124}, {61, 123}, {51, 123}, {59, 115}, {44, 101}, {54, 127}, {58, 115}, {50, 120}, {56, 114}, {62, 116}, {55, 124}, {57, 114}, {63, 116}, {54, 123}, {43, 101}, {32, 112}, {47, 127}, {41, 120}, {60, 110}, {61, 111}, {44, 127}, {32, 116}, {33, 116}, {32, 119}, {39, 112}, {37, 125}, {36, 125}, {35, 121}, {42, 112}, {34, 121}, {60, 103}, {42, 118}, {51, 110}, {43, 117}, {55, 105}, {57, 103}, {41, 118}, {42, 117}, {54, 105}, {10, 104}, {19, 113}, {18, 113}, {31, 119}, {20, 120}, {7, 104}, {9, 122}, {11, 120}, {18, 102}, {2, 119}, {1, 119}, {17, 102}, {2, 122}, {13, 117}, {12, 117}, {16, 106}, {17, 106}, {17, 145}, {47, 175}, {34, 162}, {1, 128}, {47, 174}, {41, 168}, {29, 156}, {63, 189}, {66, 192}, {68, 198}, {6, 133}, {33, 162}, {30, 157}, {27, 159}, {7, 130}, {31, 154}, {22, 147}, {20, 145}, {56, 189}, {67, 198}, {69, 192}, {21, 147}, {44, 170}, {40, 174}, {26, 156}, {24, 159}, {45, 170}, {31, 152}, {8, 128}, {14, 134}, {53, 189}, {57, 177}, {4, 141}, {78, 199}, {8, 130}, {27, 145}, {23, 157}, {52, 190}, {11, 128}, {37, 174}, {53, 190}, {58, 177}, {1, 141}, {9, 133}, {75, 199}, {76, 192}, {77, 193}, {11, 134}, {29, 144}, {6, 136}, {30, 144}, {9, 135}, {7, 136}, {46, 161}, {30, 145}, {8, 135}, {79, 192}, {49, 161}, {55, 167}, {10, 155}, {35, 178}, {21, 132}, {80, 193}, {9, 155}, {85, 199}, {32, 178}, {18, 128}, {58, 168}, {63, 173}, {81, 195}, {5, 150}, {36, 183}, {21, 134}, {27, 143}, {16, 133}, {26, 143}, {19, 133}, {87, 193}, {33, 183}, {28, 132}, {93, 197}, {91, 195}, {48, 168}, {46, 183}, {56, 161}, {3, 153}, {59, 161}, {2, 153}, {90, 193}, {88, 195}, {51, 168}, {31, 132}, {43, 183}, {50, 174}, {53, 169}, {8, 150}, {24, 134}, {48, 175}, {88, 199}, {54, 169}, {56, 167}, {4, 164}, {51, 147}, {25, 185}, {55, 151}, {2, 163}, {98, 195}, {30, 191}, {24, 185}, {5, 164}, {3, 162}, {20, 182}, {43, 137}, {38, 132}, {19, 176}, {22, 181}, {52, 151}, {1, 165}, {98, 198}, {39, 131}, {38, 130}, {22, 178}, {20, 176}, {16, 180}, {15, 171}, {14, 170}, {15, 170}, {96, 197}, {38, 131}, {4, 162}, {52, 146}, {28, 186}, {26, 188}, {19, 181}, {5, 163}, {29, 186}, {97, 198}, {37, 130}, {52, 147}, {61, 154}, {29, 181}, {59, 146}, {12, 166}, {27, 177}, {21, 191}, {23, 188}, {25, 178}, {59, 144}, {15, 163}, {23, 187}, {16, 188}, {60, 144}, {62, 146}, {11, 166}, {28, 177}, {22, 187}, {13, 160}, {14, 160}, {10, 165}, {12, 163}, {46, 158}, {13, 188}, {41, 152}, {24, 169}, {25, 171}, {40, 154}, {40, 155}, {45, 158}, {44, 152}, {62, 138}, {3, 182}, {40, 157}, {60, 137}, {62, 139}, {28, 171}, {61, 138}, {36, 156}, {12, 181}, {18, 171}, {34, 152}, {45, 151}, {37, 159}, {13, 182}, {50, 137}, {39, 156}, {15, 180}, {10, 182}, {39, 155}, {33, 157}, {53, 137}, {26, 167}, {49, 140}, {42, 151}, {34, 159}, {23, 169}, {50, 140}, {25, 167}, {75, 139}, {85, 149}, {5, 196}, {6, 196}, {86, 148}, {6, 197}, {72, 139}, {79, 140}, {76, 136}, {77, 136}, {3, 197}, {14, 200}, {69, 131}, {68, 131}, {82, 149}, {73, 129}, {79, 135}, {78, 135}, {95, 150}, {92, 149}, {65, 139}, {95, 149}, {4, 200}, {96, 172}, {76, 129}, {89, 148}, {7, 200}, {73, 153}, {72, 153}, {91, 138}, {76, 158}, {83, 129}, {93, 142}, {94, 141}, {90, 142}, {75, 158}, {91, 141}, {92, 138}, {69, 146}, {86, 129}, {98, 186}, {17, 200}, {99, 186}, {99, 184}, {100, 191}, {70, 154}, {100, 184}, {80, 140}, {83, 142}, {36, 196}, {35, 194}, {85, 180}, {78, 175}, {71, 165}, {86, 180}, {77, 175}, {38, 194}, {91, 191}, {93, 187}, {95, 185}, {35, 196}, {94, 185}, {92, 187}, {89, 176}, {90, 176}, {100, 142}, {82, 190}, {64, 173}, {65, 172}, {83, 190}, {66, 172}, {97, 143}, {74, 164}, {45, 194}, {96, 143}, {75, 164}, {67, 179}, {93, 173}, {48, 194}, {64, 179}, {95, 172}, {94, 173}, {83, 160}, {82, 166}, {98, 150}, {96, 148}, {84, 160}, {80, 165}, {81, 166}, {99, 148}, {74, 179}, {69, 184}, {70, 184}, {77, 179}, {66, 189} }>;

(II) A more general form is to represent the graph as the orbit of {97, 104} under the group generated by the following permutations:

a: (2, 91, 10, 11)(3, 81, 9, 21)(4, 71, 8, 31)(5, 61, 7, 41)(6, 51)(12, 92, 100, 20)(13, 82, 99, 30)(14, 72, 98, 40)(15, 62, 97, 50)(16, 52, 96, 60)(17, 42, 95, 70)(18, 32, 94, 80)(19, 22, 93, 90)(23, 83, 89, 29)(24, 73, 88, 39)(25, 63, 87, 49)(26, 53, 86, 59)(27, 43, 85, 69)(28, 33, 84, 79)(34, 74, 78, 38)(35, 64, 77, 48)(36, 54, 76, 58)(37, 44, 75, 68)(45, 65, 67, 47)(46, 55, 66, 57)(101, 199, 131, 159)(102, 112, 185, 126)(103, 106, 151, 172)(104, 120, 163, 138)(105, 192, 177, 183)(107, 140, 171, 116)(108, 186, 157, 160)(109, 135, 132, 162)(110, 133, 147, 197)(111, 130, 152, 164)(113, 178, 173, 193)(114, 161, 167, 189)(115, 156, 169, 129)(117, 149, 184, 145)(118, 150, 154, 200)(119, 141, 165, 128)(121, 179, 175, 194)(122, 191, 182, 166)(123, 136, 168, 196)(124, 125, 127, 158)(134, 153, 195, 155)(137, 180, 146, 143)(139, 198, 174, 170)(142, 176, 181, 187)(144, 188, 190, 148)
b: (2, 4, 10, 8)(3, 7, 9, 5)(11, 31, 91, 71)(12, 34, 100, 78)(13, 37, 99, 75)(14, 40, 98, 72)(15, 33, 97, 79)(16, 36, 96, 76)(17, 39, 95, 73)(18, 32, 94, 80)(19, 35, 93, 77)(20, 38, 92, 74)(21, 61, 81, 41)(22, 64, 90, 48)(23, 67, 89, 45)(24, 70, 88, 42)(25, 63, 87, 49)(26, 66, 86, 46)(27, 69, 85, 43)(28, 62, 84, 50)(29, 65, 83, 47)(30, 68, 82, 44)(52, 54, 60, 58)(53, 57, 59, 55)(101, 145, 131, 149)(102, 112, 185, 126)(103, 115, 151, 169)(104, 135, 163, 162)(105, 137, 177, 146)(106, 156, 172, 129)(107, 140, 171, 116)(108, 170, 157, 198)(109, 120, 132, 138)(110, 168, 147, 123)(111, 166, 152, 191)(113, 178, 173, 193)(114, 161, 167, 189)(117, 159, 184, 199)(118, 134, 154, 195)(119, 141, 165, 128)(121, 142, 175, 181)(122, 164, 182, 130)(124, 190, 127, 144)(125, 148, 158, 188)(133, 196, 197, 136)(139, 160, 174, 186)(143, 192, 180, 183)(150, 153, 200, 155)(176, 194, 187, 179)
c: (1, 2, 9, 8)(3, 6, 7, 4)(5, 10)(11, 32, 99, 78)(12, 39, 98, 71)(13, 36, 97, 74)(14, 33, 96, 77)(15, 40, 95, 80)(16, 37, 94, 73)(17, 34, 93, 76)(18, 31, 92, 79)(19, 38, 91, 72)(20, 35, 100, 75)(21, 62, 89, 48)(22, 69, 88, 41)(23, 66, 87, 44)(24, 63, 86, 47)(25, 70, 85, 50)(26, 67, 84, 43)(27, 64, 83, 46)(28, 61, 82, 49)(29, 68, 81, 42)(30, 65, 90, 45)(51, 52, 59, 58)(53, 56, 57, 54)(55, 60)(101, 188, 125, 107)(102, 152, 187, 192)(103, 105, 137, 167)(104, 164, 182, 196)(106, 159, 173, 129)(108, 113, 132, 138)(109, 117, 156, 198)(110, 151, 144, 124)(111, 166, 112, 186)(114, 127, 169, 189)(115, 168, 147, 146)(116, 148, 175, 134)(118, 181, 131, 195)(119, 122, 135, 128)(120, 178, 184, 199)(121, 142, 158, 145)(123, 190, 161, 177)(126, 180, 174, 185)(130, 141, 153, 133)(136, 200, 162, 197)(139, 176, 194, 191)(140, 171, 154, 149)(143, 179, 160, 183)(150, 165, 163, 155)(157, 172, 193, 170)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 200, 38 ]
200
-1 165 128 119 141
-2 122 119 163 153
-3 182 162 153 197
-4 200 162 141 164
-5 150 163 196 164
-6 133 136 196 197
-7 200 136 104 130
-8 135 128 150 130
-9 122 133 155 135
-10 165 155 104 182
-11 166 134 128 120
-12 166 181 117 163
-13 188 160 182 117
-14 134 200 170 160
-15 180 170 171 163
-16 133 188 180 106
-17 145 200 102 106
-18 102 113 171 128
-19 176 133 113 181
-20 176 145 182 120
-21 132 134 147 191
-22 187 178 147 181
-23 187 188 157 169
-24 134 169 159 185
-25 167 178 171 185
-26 143 188 156 167
-27 143 177 145 159
-28 132 177 171 186
-29 144 156 181 186
-30 144 145 157 191
-31 132 154 119 152
-32 112 178 116 119
-33 157 116 183 162
-34 121 159 162 152
-35 121 178 194 196
-36 156 125 183 196
-37 125 159 130 174
-38 132 194 130 131
-39 155 112 156 131
-40 154 155 157 174
-41 168 118 152 120
-42 112 117 118 151
-43 101 137 117 183
-44 101 170 127 152
-45 158 170 194 151
-46 158 106 161 183
-47 127 106 174 175
-48 113 168 194 175
-49 112 113 161 140
-50 137 140 174 120
-51 110 123 168 147
-52 146 190 147 151
-53 189 190 169 137
-54 123 169 105 127
-55 167 124 105 151
-56 167 189 114 161
-57 177 103 114 127
-58 177 124 168 115
-59 144 146 115 161
-60 110 144 103 137
-61 154 111 123 138
-62 146 116 138 139
-63 189 126 116 173
-64 121 123 179 173
-65 121 124 139 172
-66 189 125 192 172
-67 198 179 103 125
-68 198 111 124 131
-69 146 192 184 131
-70 154 103 126 184
-71 165 111 118 109
-72 139 118 108 153
-73 101 126 129 153
-74 101 179 109 164
-75 199 158 139 164
-76 136 158 192 129
-77 179 136 193 175
-78 111 199 135 175
-79 135 192 140 108
-80 165 126 193 140
-81 110 166 195 109
-82 166 190 149 108
-83 190 160 129 142
-84 105 160 107 109
-85 199 180 105 149
-86 114 180 148 129
-87 102 114 193 107
-88 199 102 115 195
-89 176 115 148 108
-90 110 176 193 142
-91 191 138 195 141
-92 187 122 138 149
-93 187 173 142 197
-94 107 173 141 185
-95 149 150 172 185
-96 143 148 172 197
-97 143 198 104 107
-98 198 150 195 186
-99 122 148 184 186
-100 191 104 184 142
-101 44 73 74 43
-102 88 17 18 87
-103 67 57 70 60
-104 100 7 97 10
-105 55 84 85 54
-106 46 47 16 17
-107 94 84 97 87
-108 89 79 82 72
-109 81 71 84 74
-110 90 81 60 51
-111 78 68 71 61
-112 49 39 42 32
-113 48 49 18 19
-114 56 57 86 87
-115 88 89 58 59
-116 33 62 63 32
-117 12 13 42 43
-118 71 72 41 42
-119 1 2 31 32
-120 11 50 41 20
-121 34 35 64 65
-122 99 2 92 9
-123 61 51 64 54
-124 55 68 58 65
-125 66 67 36 37
-126 80 70 73 63
-127 44 57 47 54
-128 11 1 18 8
-129 83 73 86 76
-130 37 38 7 8
-131 68 69 38 39
-132 38 28 31 21
-133 16 6 19 9
-134 11 24 14 21
-135 78 79 8 9
-136 77 6 7 76
-137 60 50 53 43
-138 91 92 61 62
-139 72 62 75 65
-140 79 80 49 50
-141 1 91 4 94
-142 100 90 93 83
-143 26 27 96 97
-144 59 60 29 30
-145 27 17 30 20
-146 69 59 62 52
-147 22 51 52 21
-148 99 89 96 86
-149 92 82 95 85
-150 5 95 8 98
-151 55 45 52 42
-152 44 34 41 31
-153 2 3 72 73
-154 70 61 40 31
-155 39 40 9 10
-156 36 26 39 29
-157 33 23 40 30
-158 45 46 75 76
-159 34 24 37 27
-160 13 14 83 84
-161 56 46 59 49
-162 33 34 3 4
-163 12 2 15 5
-164 4 5 74 75
-165 1 80 71 10
-166 11 12 81 82
-167 55 56 25 26
-168 58 48 51 41
-169 23 24 53 54
-170 44 45 14 15
-171 25 15 28 18
-172 66 95 96 65
-173 93 94 63 64
-174 47 37 50 40
-175 77 78 47 48
-176 89 90 19 20
-177 57 58 27 28
-178 22 35 25 32
-179 77 67 74 64
-180 15 16 85 86
-181 22 12 29 19
-182 13 3 20 10
-183 33 46 36 43
-184 99 100 69 70
-185 24 25 94 95
-186 99 28 29 98
-187 22 23 92 93
-188 23 13 26 16
-189 66 56 63 53
-190 82 83 52 53
-191 100 91 30 21
-192 66 79 69 76
-193 77 90 80 87
-194 45 35 48 38
-195 88 91 81 98
-196 35 36 5 6
-197 3 93 6 96
-198 67 68 97 98
-199 88 78 85 75
-200 14 4 17 7
0

**************