C4graphGraph forms for C4 [ 200, 39 ] = BGCG({4,4}_10,0;K1;{15,16})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 200, 39 ] = BGCG({4,4}_10,0;K1;{15,16}).

(I) Following is a form readable by MAGMA:

g:=Graph<200|{ {99, 119}, {98, 122}, {99, 122}, {68, 101}, {92, 125}, {90, 120}, {81, 116}, {85, 112}, {84, 114}, {87, 113}, {64, 103}, {81, 120}, {86, 124}, {84, 127}, {66, 110}, {70, 106}, {83, 127}, {69, 104}, {70, 107}, {74, 103}, {65, 111}, {64, 111}, {95, 112}, {74, 122}, {76, 124}, {71, 118}, {71, 116}, {73, 122}, {77, 126}, {90, 111}, {89, 111}, {76, 123}, {94, 105}, {74, 114}, {66, 123}, {69, 127}, {68, 127}, {77, 113}, {86, 106}, {67, 126}, {84, 105}, {83, 109}, {82, 109}, {85, 106}, {42, 105}, {46, 102}, {32, 105}, {45, 102}, {54, 125}, {61, 118}, {55, 121}, {57, 119}, {54, 121}, {40, 121}, {44, 125}, {61, 108}, {35, 113}, {39, 116}, {59, 104}, {37, 112}, {36, 114}, {56, 110}, {60, 107}, {61, 106}, {43, 115}, {47, 119}, {38, 124}, {39, 121}, {44, 115}, {51, 108}, {47, 112}, {58, 101}, {21, 117}, {28, 124}, {23, 118}, {22, 117}, {29, 126}, {24, 123}, {8, 109}, {9, 108}, {8, 110}, {12, 107}, {25, 113}, {26, 114}, {2, 107}, {29, 116}, {7, 109}, {12, 103}, {19, 126}, {29, 115}, {7, 104}, {28, 115}, {10, 101}, {20, 101}, {22, 103}, {7, 117}, {6, 117}, {21, 102}, {14, 123}, {30, 102}, {17, 104}, {13, 118}, {18, 110}, {5, 120}, {6, 120}, {9, 119}, {2, 125}, {19, 108}, {18, 146}, {31, 159}, {30, 158}, {56, 184}, {69, 197}, {20, 149}, {61, 188}, {65, 192}, {1, 131}, {8, 138}, {5, 135}, {62, 188}, {9, 138}, {46, 173}, {37, 166}, {17, 146}, {15, 140}, {70, 197}, {12, 136}, {47, 171}, {64, 196}, {69, 193}, {13, 136}, {4, 130}, {19, 149}, {57, 191}, {45, 170}, {56, 191}, {60, 187}, {15, 135}, {51, 187}, {8, 129}, {36, 173}, {35, 170}, {79, 198}, {16, 154}, {21, 159}, {20, 158}, {6, 141}, {41, 162}, {17, 154}, {67, 200}, {10, 134}, {34, 174}, {23, 155}, {14, 130}, {53, 185}, {68, 200}, {52, 185}, {79, 193}, {27, 139}, {49, 161}, {1, 144}, {51, 162}, {26, 139}, {24, 138}, {46, 188}, {47, 188}, {50, 161}, {38, 178}, {55, 163}, {25, 140}, {39, 178}, {34, 183}, {46, 184}, {80, 198}, {9, 145}, {94, 198}, {35, 187}, {40, 177}, {95, 198}, {14, 148}, {32, 186}, {10, 145}, {48, 171}, {44, 183}, {15, 148}, {11, 144}, {56, 163}, {37, 185}, {40, 180}, {57, 165}, {23, 138}, {95, 194}, {7, 153}, {32, 191}, {41, 182}, {38, 185}, {36, 187}, {58, 165}, {4, 164}, {51, 147}, {31, 191}, {62, 158}, {3, 162}, {42, 139}, {33, 128}, {17, 176}, {5, 164}, {60, 157}, {41, 139}, {10, 169}, {16, 180}, {50, 150}, {2, 167}, {16, 181}, {53, 144}, {1, 167}, {49, 151}, {59, 157}, {62, 152}, {20, 179}, {52, 147}, {63, 152}, {1, 169}, {38, 142}, {31, 182}, {53, 156}, {54, 156}, {27, 176}, {43, 128}, {31, 180}, {3, 175}, {42, 134}, {22, 186}, {2, 175}, {40, 133}, {55, 153}, {26, 181}, {30, 177}, {63, 144}, {25, 169}, {39, 151}, {18, 160}, {49, 131}, {32, 146}, {52, 134}, {26, 169}, {50, 129}, {33, 146}, {28, 175}, {63, 140}, {27, 175}, {48, 132}, {45, 153}, {49, 132}, {24, 174}, {52, 130}, {35, 149}, {34, 149}, {50, 133}, {58, 141}, {11, 179}, {25, 161}, {59, 131}, {24, 161}, {29, 164}, {4, 190}, {33, 155}, {30, 164}, {15, 180}, {63, 132}, {4, 184}, {28, 160}, {23, 171}, {14, 178}, {62, 130}, {3, 190}, {48, 141}, {27, 166}, {22, 171}, {60, 129}, {18, 172}, {48, 142}, {57, 135}, {13, 178}, {41, 150}, {19, 172}, {87, 151}, {88, 152}, {72, 137}, {91, 154}, {6, 196}, {3, 192}, {64, 132}, {67, 135}, {85, 145}, {73, 140}, {84, 145}, {92, 154}, {5, 194}, {11, 193}, {12, 199}, {11, 199}, {67, 143}, {83, 159}, {13, 192}, {66, 143}, {71, 137}, {85, 155}, {87, 152}, {98, 173}, {75, 155}, {81, 128}, {78, 156}, {79, 156}, {96, 179}, {16, 196}, {90, 142}, {21, 193}, {66, 150}, {99, 182}, {72, 158}, {73, 159}, {75, 157}, {65, 150}, {96, 183}, {74, 157}, {82, 133}, {91, 131}, {92, 133}, {100, 189}, {91, 128}, {82, 143}, {77, 147}, {81, 143}, {76, 147}, {90, 186}, {34, 195}, {86, 183}, {33, 195}, {100, 134}, {42, 200}, {37, 199}, {36, 199}, {98, 129}, {43, 200}, {71, 163}, {77, 168}, {70, 160}, {94, 184}, {91, 189}, {88, 190}, {72, 174}, {78, 168}, {89, 190}, {45, 197}, {97, 137}, {43, 194}, {97, 136}, {96, 137}, {88, 177}, {44, 197}, {79, 166}, {80, 186}, {100, 142}, {98, 136}, {73, 165}, {95, 179}, {72, 165}, {96, 141}, {89, 182}, {80, 160}, {100, 148}, {87, 167}, {65, 176}, {93, 172}, {86, 167}, {68, 181}, {76, 189}, {54, 196}, {94, 172}, {80, 163}, {92, 168}, {88, 173}, {93, 168}, {75, 189}, {97, 151}, {53, 194}, {99, 148}, {93, 170}, {55, 192}, {59, 195}, {97, 153}, {58, 195}, {83, 170}, {75, 176}, {78, 181}, {82, 174}, {78, 177}, {93, 162}, {89, 166} }>;

(II) A more general form is to represent the graph as the orbit of {99, 119} under the group generated by the following permutations:

a: (2, 26)(3, 41)(4, 66)(5, 81)(7, 21)(8, 46)(9, 61)(10, 86)(11, 59)(12, 74)(13, 99)(15, 39)(16, 54)(17, 79)(18, 94)(20, 34)(23, 47)(24, 62)(25, 87)(28, 42)(29, 67)(30, 82)(31, 55)(32, 80)(33, 95)(36, 60)(37, 75)(38, 100)(44, 68)(45, 83)(49, 63)(50, 88)(52, 76)(53, 91)(57, 71)(58, 96)(65, 89)(70, 84)(73, 97)(78, 92)(101, 183)(102, 109)(104, 193)(105, 160)(106, 145)(107, 114)(110, 184)(112, 155)(115, 200)(116, 135)(118, 119)(121, 180)(122, 136)(123, 130)(124, 134)(125, 181)(127, 197)(128, 194)(129, 173)(131, 144)(133, 177)(137, 165)(138, 188)(139, 175)(140, 151)(143, 164)(146, 198)(148, 178)(150, 190)(152, 161)(153, 159)(154, 156)(157, 199)(158, 174)(163, 191)(166, 176)(167, 169)(179, 195)(182, 192)(185, 189)
b: (1, 2, 27, 26)(3, 42, 25, 86)(4, 67, 24, 61)(5, 82, 23, 46)(6, 7, 22, 21)(8, 47, 30, 81)(9, 62, 29, 66)(10, 87, 28, 41)(11, 54, 17, 74)(12, 79, 16, 59)(13, 94, 15, 34)(14, 19)(18, 99, 20, 39)(31, 58, 97, 80)(32, 73, 96, 55)(33, 98, 95, 40)(35, 38, 93, 100)(36, 53, 92, 75)(37, 78, 91, 60)(43, 50, 85, 88)(44, 65, 84, 63)(45, 90, 83, 48)(49, 70, 89, 68)(51, 52, 77, 76)(56, 57, 72, 71)(64, 69)(101, 151, 160, 182)(102, 120, 109, 171)(103, 193, 196, 104)(105, 140, 183, 192)(106, 190, 200, 161)(107, 166, 181, 131)(108, 130, 126, 123)(110, 119, 158, 116)(111, 127, 132, 197)(112, 177, 128, 129)(113, 124, 162, 134)(114, 144, 125, 176)(115, 150, 145, 152)(118, 184, 135, 174)(121, 146, 122, 179)(133, 155, 173, 194)(136, 198, 180, 195)(137, 163, 191, 165)(138, 188, 164, 143)(139, 169, 167, 175)(141, 153, 186, 159)(142, 170)(148, 149, 178, 172)(154, 157, 199, 156)(168, 189, 187, 185)
c: (2, 53, 10, 59)(3, 5, 9, 7)(4, 57, 8, 55)(6, 51)(11, 26, 91, 86)(12, 78, 100, 34)(13, 30, 99, 82)(14, 72, 98, 40)(15, 24, 97, 88)(16, 76, 96, 36)(17, 28, 95, 84)(18, 80, 94, 32)(19, 22, 93, 90)(20, 74, 92, 38)(21, 41, 81, 61)(23, 45, 89, 67)(25, 49, 87, 63)(27, 43, 85, 69)(29, 47, 83, 65)(31, 66, 71, 46)(33, 70, 79, 42)(35, 64, 77, 48)(37, 68, 75, 44)(39, 62, 73, 50)(52, 58, 60, 54)(101, 157, 125, 185)(102, 182, 143, 118)(103, 168, 142, 149)(104, 175, 194, 145)(105, 146, 160, 198)(106, 193, 139, 128)(107, 156, 134, 195)(108, 117, 162, 120)(109, 192, 164, 119)(110, 163, 184, 191)(111, 126, 171, 170)(112, 127, 176, 115)(113, 132)(114, 154, 124, 179)(116, 188, 159, 150)(121, 130, 165, 129)(122, 133, 178, 158)(123, 137, 173, 180)(131, 167, 144, 169)(135, 138, 153, 190)(136, 177, 148, 174)(140, 161, 151, 152)(141, 187, 196, 147)(155, 197, 166, 200)(172, 186)(181, 189, 183, 199)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 200, 39 ]
200
-1 144 167 169 131
-2 167 125 107 175
-3 190 192 162 175
-4 190 184 130 164
-5 135 194 120 164
-6 117 141 196 120
-7 104 117 109 153
-8 110 138 129 109
-9 145 138 108 119
-10 101 134 145 169
-11 144 199 179 193
-12 199 103 136 107
-13 178 136 192 118
-14 123 178 148 130
-15 135 180 148 140
-16 154 180 181 196
-17 154 176 146 104
-18 110 146 160 172
-19 126 149 172 108
-20 101 179 158 149
-21 102 159 193 117
-22 103 171 117 186
-23 155 138 171 118
-24 123 138 161 174
-25 113 169 161 140
-26 114 169 181 139
-27 176 166 139 175
-28 124 115 160 175
-29 115 126 116 164
-30 177 102 158 164
-31 180 191 159 182
-32 146 191 105 186
-33 155 146 128 195
-34 149 183 195 174
-35 187 113 170 149
-36 187 199 114 173
-37 166 199 112 185
-38 178 124 185 142
-39 121 178 116 151
-40 121 133 177 180
-41 182 139 150 162
-42 134 200 105 139
-43 200 115 128 194
-44 125 115 183 197
-45 102 170 153 197
-46 188 102 173 184
-47 188 112 171 119
-48 132 171 141 142
-49 132 161 151 131
-50 133 150 161 129
-51 187 147 162 108
-52 134 147 130 185
-53 144 156 194 185
-54 121 156 125 196
-55 121 192 163 153
-56 110 191 184 163
-57 165 135 191 119
-58 165 101 195 141
-59 157 104 195 131
-60 187 157 107 129
-61 188 106 118 108
-62 188 158 130 152
-63 132 144 140 152
-64 132 111 103 196
-65 176 111 192 150
-66 110 143 123 150
-67 143 200 135 126
-68 101 200 181 127
-69 104 127 193 197
-70 160 106 107 197
-71 137 116 118 163
-72 165 158 137 174
-73 165 122 159 140
-74 122 157 103 114
-75 176 155 189 157
-76 123 189 124 147
-77 113 168 147 126
-78 177 156 168 181
-79 198 166 156 193
-80 198 160 163 186
-81 143 116 128 120
-82 143 133 174 109
-83 159 170 127 109
-84 145 114 105 127
-85 155 112 145 106
-86 167 124 106 183
-87 167 113 151 152
-88 177 190 173 152
-89 111 166 190 182
-90 111 120 142 186
-91 154 189 128 131
-92 154 133 168 125
-93 168 170 172 162
-94 198 105 172 184
-95 198 112 179 194
-96 179 137 183 141
-97 136 137 151 153
-98 122 136 129 173
-99 122 148 182 119
-100 134 189 148 142
-101 68 58 20 10
-102 45 46 30 21
-103 22 12 74 64
-104 69 59 17 7
-105 94 84 42 32
-106 70 61 85 86
-107 12 2 70 60
-108 61 51 19 9
-109 82 83 7 8
-110 66 56 18 8
-111 89 90 64 65
-112 47 37 95 85
-113 77 35 25 87
-114 36 26 84 74
-115 44 28 29 43
-116 81 71 39 29
-117 22 6 7 21
-118 23 13 71 61
-119 99 57 47 9
-120 90 81 5 6
-121 55 39 40 54
-122 99 73 74 98
-123 66 24 14 76
-124 38 28 86 76
-125 44 2 92 54
-126 77 67 29 19
-127 68 69 83 84
-128 33 91 81 43
-129 60 50 8 98
-130 14 4 62 52
-131 1 91 59 49
-132 48 49 63 64
-133 92 82 50 40
-134 100 52 42 10
-135 67 57 15 5
-136 12 13 97 98
-137 71 72 96 97
-138 23 24 8 9
-139 26 27 41 42
-140 25 15 73 63
-141 58 48 6 96
-142 100 90 48 38
-143 66 67 81 82
-144 11 1 63 53
-145 84 85 9 10
-146 33 17 18 32
-147 77 51 52 76
-148 99 100 14 15
-149 34 35 19 20
-150 66 50 41 65
-151 49 39 97 87
-152 88 62 63 87
-153 55 45 7 97
-154 91 92 16 17
-155 33 23 85 75
-156 78 79 53 54
-157 59 60 74 75
-158 72 62 30 20
-159 83 73 31 21
-160 80 70 28 18
-161 24 25 49 50
-162 3 93 51 41
-163 55 56 80 71
-164 4 5 29 30
-165 57 58 72 73
-166 89 79 37 27
-167 1 2 86 87
-168 77 78 92 93
-169 1 25 26 10
-170 45 35 93 83
-171 22 23 47 48
-172 93 94 18 19
-173 88 46 36 98
-174 34 24 82 72
-175 2 3 27 28
-176 27 17 75 65
-177 88 78 40 30
-178 13 14 38 39
-179 11 95 96 20
-180 15 16 40 31
-181 78 68 26 16
-182 99 89 41 31
-183 44 34 96 86
-184 56 46 4 94
-185 37 38 52 53
-186 22 90 80 32
-187 35 36 60 51
-188 46 47 61 62
-189 100 91 75 76
-190 88 89 3 4
-191 56 57 31 32
-192 55 13 3 65
-193 11 79 69 21
-194 5 95 53 43
-195 33 34 58 59
-196 16 6 64 54
-197 44 45 69 70
-198 79 80 94 95
-199 11 12 36 37
-200 67 68 42 43
0

**************