[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 202, 1 ] =
W(101,2).
(I) Following is a form readable by MAGMA:
g:=Graph<202|{ {2, 3}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192,
193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181},
{178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166,
167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155},
{152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {142, 143}, {68,
69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52,
53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {4, 5}, {6, 7}, {8, 9},
{10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25},
{26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41},
{70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85},
{86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100,
101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113},
{114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126,
127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139},
{140, 141}, {1, 2}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186},
{181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157,
158}, {153, 154}, {149, 150}, {145, 146}, {69, 70}, {65, 66}, {61, 62}, {57,
58}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {5, 6}, {9, 10}, {13, 14}, {17,
18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {73, 74}, {77, 78}, {81,
82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110},
{113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137,
138}, {141, 142}, {3, 4}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163,
164}, {155, 156}, {147, 148}, {67, 68}, {59, 60}, {51, 52}, {43, 44}, {11, 12},
{19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107,
108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {7, 8}, {199, 200}, {183,
184}, {167, 168}, {151, 152}, {55, 56}, {23, 24}, {39, 40}, {71, 72}, {87, 88},
{103, 104}, {119, 120}, {135, 136}, {15, 16}, {175, 176}, {143, 144}, {47, 48},
{79, 80}, {111, 112}, {31, 32}, {159, 160}, {95, 96}, {1, 101}, {2, 102}, {3,
103}, {8, 108}, {9, 109}, {10, 110}, {11, 111}, {16, 116}, {17, 117}, {18, 118},
{19, 119}, {24, 124}, {25, 125}, {26, 126}, {27, 127}, {1, 103}, {8, 110}, {9,
111}, {16, 118}, {17, 119}, {24, 126}, {25, 127}, {2, 104}, {3, 105}, {6, 108},
{7, 109}, {18, 120}, {19, 121}, {22, 124}, {23, 125}, {4, 104}, {5, 105}, {6,
106}, {7, 107}, {20, 120}, {21, 121}, {22, 122}, {23, 123}, {4, 106}, {5, 107},
{20, 122}, {21, 123}, {10, 112}, {11, 113}, {14, 116}, {15, 117}, {12, 112},
{13, 113}, {14, 114}, {15, 115}, {12, 114}, {13, 115}, {63, 64}, {191, 192},
{26, 128}, {63, 165}, {62, 164}, {59, 161}, {58, 160}, {27, 129}, {30, 132},
{31, 133}, {90, 192}, {91, 193}, {94, 196}, {95, 197}, {28, 128}, {63, 163},
{62, 162}, {61, 161}, {60, 160}, {29, 129}, {30, 130}, {31, 131}, {92, 192},
{93, 193}, {94, 194}, {95, 195}, {28, 130}, {61, 163}, {60, 162}, {29, 131},
{92, 194}, {93, 195}, {32, 132}, {59, 159}, {58, 158}, {57, 157}, {56, 156},
{51, 151}, {50, 150}, {49, 149}, {48, 148}, {43, 143}, {42, 142}, {41, 141},
{33, 133}, {34, 134}, {35, 135}, {40, 140}, {96, 196}, {97, 197}, {98, 198},
{99, 199}, {32, 134}, {57, 159}, {56, 158}, {49, 151}, {48, 150}, {41, 143},
{33, 135}, {40, 142}, {96, 198}, {97, 199}, {34, 136}, {55, 157}, {54, 156},
{51, 153}, {50, 152}, {35, 137}, {38, 140}, {39, 141}, {98, 200}, {99, 201},
{36, 136}, {55, 155}, {54, 154}, {53, 153}, {52, 152}, {37, 137}, {38, 138},
{39, 139}, {100, 200}, {101, 201}, {102, 202}, {36, 138}, {53, 155}, {52, 154},
{37, 139}, {100, 202}, {42, 144}, {47, 149}, {46, 148}, {43, 145}, {44, 144},
{47, 147}, {46, 146}, {45, 145}, {44, 146}, {45, 147}, {1, 202}, {64, 164}, {67,
167}, {66, 166}, {65, 165}, {72, 172}, {73, 173}, {74, 174}, {75, 175}, {80,
180}, {81, 181}, {82, 182}, {83, 183}, {88, 188}, {89, 189}, {90, 190}, {91,
191}, {64, 166}, {65, 167}, {72, 174}, {73, 175}, {80, 182}, {81, 183}, {88,
190}, {89, 191}, {66, 168}, {67, 169}, {70, 172}, {71, 173}, {82, 184}, {83,
185}, {86, 188}, {87, 189}, {68, 168}, {69, 169}, {70, 170}, {71, 171}, {84,
184}, {85, 185}, {86, 186}, {87, 187}, {68, 170}, {69, 171}, {84, 186}, {85,
187}, {74, 176}, {75, 177}, {78, 180}, {79, 181}, {76, 176}, {77, 177}, {78,
178}, {79, 179}, {76, 178}, {77, 179}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (38, 139) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (43, 144)
c: (63, 164)
d: (11, 112)
e: (40, 141)
f: (7, 108)
g: (36, 137)
h: (87, 188)
m: (37, 138)
n1: (6, 107)
a1: (20, 121)
b1: (91, 192)
c1: (75, 176)
d1: (96, 197)
e1: (54, 155)
f1: (65, 166)
g1: (3, 104)
h1: (52, 153)
m1: (90, 191)
n2: (32, 133)
a2: (83, 184)
b2: (30, 131)
c2: (62, 163)
d2: (9, 110)
e2: (84, 185)
f2: (57, 158)
g2: (4, 105)
h2: (58, 159)
m2: (2, 103)
n3: (95, 196)
a3: (78, 179)
b3: (29, 130)
c3: (18, 119)
d3: (98, 199)
e3: (59, 160)
f3: (68, 169)
g3: (21, 122)
h3: (49, 150)
m3: (100, 201)
n4: (86, 187)
a4: (15, 116)
b4: (64, 165)
c4: (51, 152)
d4: (48, 149)
e4: (85, 186)
f4: (82, 183)
g4: (81, 182)
h4: (71, 172)
m4: (77, 178)
n5: (14, 115)
a5: (16, 117)
b5: (5, 106)
c5: (25, 126)
d5: (39, 140)
e5: (101, 202)
f5: (70, 171)
g5: (60, 161)
h5: (13, 114)
m5: (17, 118)
n6: (66, 167)
a6: (34, 135)
b6: (44, 145)
c6: (73, 174)
d6: (24, 125)
e6: (67, 168)
f6: (56, 157)
g6: (19, 120)
h6: (55, 156)
m6: (99, 200)
n7: (23, 124)
a7: (33, 134)
b7: (97, 198)
c7: (35, 136)
d7: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101)(102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202)
e7: (61, 162)
f7: (46, 147)
g7: (69, 170)
h7: (72, 173)
m7: (88, 189)
n8: (10, 111)
a8: (27, 128)
b8: (8, 109)
c8: (42, 143)
d8: (45, 146)
e8: (2, 101)(3, 100)(4, 99)(5, 98)(6, 97)(7, 96)(8, 95)(9, 94)(10, 93)(11,
92)(12, 91)(13, 90)(14, 89)(15, 88)(16, 87)(17, 86)(18, 85)(19, 84)(20, 83)(21,
82)(22, 81)(23, 80)(24, 79)(25, 78)(26, 77)(27, 76)(28, 75)(29, 74)(30, 73)(31,
72)(32, 71)(33, 70)(34, 69)(35, 68)(36, 67)(37, 66)(38, 65)(39, 64)(40, 63)(41,
62)(42, 61)(43, 60)(44, 59)(45, 58)(46, 57)(47, 56)(48, 55)(49, 54)(50, 53)(51,
52)(103, 202)(104, 201)(105, 200)(106, 199)(107, 198)(108, 197)(109, 196)(110,
195)(111, 194)(112, 193)(113, 192)(114, 191)(115, 190)(116, 189)(117, 188)(118,
187)(119, 186)(120, 185)(121, 184)(122, 183)(123, 182)(124, 181)(125, 180)(126,
179)(127, 178)(128, 177)(129, 176)(130, 175)(131, 174)(132, 173)(133, 172)(134,
171)(135, 170)(136, 169)(137, 168)(138, 167)(139, 166)(140, 165)(141, 164)(142,
163)(143, 162)(144, 161)(145, 160)(146, 159)(147, 158)(148, 157)(149, 156)(150,
155)(151, 154)(152, 153)
f8: (93, 194)
g8: (92, 193)
h8: (31, 132)
m8: (41, 142)
n9: (22, 123)
a9: (79, 180)
b9: (74, 175)
c9: (26, 127)
d9: (94, 195)
e9: (28, 129)
f9: (89, 190)
g9: (76, 177)
h9: (80, 181)
m9: (47, 148)
n10: (12, 113)
a10: (53, 154)
C4[ 202, 1 ]
202
-1 2 101 103 202
-2 1 3 102 104
-3 2 4 103 105
-4 3 5 104 106
-5 4 6 105 107
-6 5 7 106 108
-7 6 8 107 109
-8 110 7 9 108
-9 111 8 10 109
-10 11 110 112 9
-11 12 111 113 10
-12 11 13 112 114
-13 12 14 113 115
-14 13 15 114 116
-15 14 16 115 117
-16 15 17 116 118
-17 16 18 117 119
-18 17 19 118 120
-19 121 18 20 119
-20 122 19 21 120
-21 22 121 123 20
-22 23 122 124 21
-23 22 24 123 125
-24 23 25 124 126
-25 24 26 125 127
-26 25 27 126 128
-27 26 28 127 129
-28 27 29 128 130
-29 28 30 129 131
-30 132 29 31 130
-31 133 30 32 131
-32 33 132 134 31
-33 34 133 135 32
-34 33 35 134 136
-35 34 36 135 137
-36 35 37 136 138
-37 36 38 137 139
-38 37 39 138 140
-39 38 40 139 141
-40 39 41 140 142
-41 143 40 42 141
-42 144 41 43 142
-43 44 143 145 42
-44 45 144 146 43
-45 44 46 145 147
-46 45 47 146 148
-47 46 48 147 149
-48 47 49 148 150
-49 48 50 149 151
-50 49 51 150 152
-51 50 52 151 153
-52 154 51 53 152
-53 155 52 54 153
-54 55 154 156 53
-55 56 155 157 54
-56 55 57 156 158
-57 56 58 157 159
-58 57 59 158 160
-59 58 60 159 161
-60 59 61 160 162
-61 60 62 161 163
-62 61 63 162 164
-63 165 62 64 163
-64 166 63 65 164
-65 66 165 167 64
-66 67 166 168 65
-67 66 68 167 169
-68 67 69 168 170
-69 68 70 169 171
-70 69 71 170 172
-71 70 72 171 173
-72 71 73 172 174
-73 72 74 173 175
-74 176 73 75 174
-75 177 74 76 175
-76 77 176 178 75
-77 78 177 179 76
-78 77 79 178 180
-79 78 80 179 181
-80 79 81 180 182
-81 80 82 181 183
-82 81 83 182 184
-83 82 84 183 185
-84 83 85 184 186
-85 187 84 86 185
-86 188 85 87 186
-87 88 187 189 86
-88 89 188 190 87
-89 88 90 189 191
-90 89 91 190 192
-91 90 92 191 193
-92 91 93 192 194
-93 92 94 193 195
-94 93 95 194 196
-95 94 96 195 197
-96 198 95 97 196
-97 199 96 98 197
-98 99 198 200 97
-99 100 199 201 98
-100 99 101 200 202
-101 1 100 102 201
-102 2 101 103 202
-103 1 3 102 104
-104 2 4 103 105
-105 3 5 104 106
-106 4 6 105 107
-107 5 7 106 108
-108 6 8 107 109
-109 110 7 9 108
-110 111 8 10 109
-111 11 110 112 9
-112 12 111 113 10
-113 11 13 112 114
-114 12 14 113 115
-115 13 15 114 116
-116 14 16 115 117
-117 15 17 116 118
-118 16 18 117 119
-119 17 19 118 120
-120 121 18 20 119
-121 122 19 21 120
-122 22 121 123 20
-123 23 122 124 21
-124 22 24 123 125
-125 23 25 124 126
-126 24 26 125 127
-127 25 27 126 128
-128 26 28 127 129
-129 27 29 128 130
-130 28 30 129 131
-131 132 29 31 130
-132 133 30 32 131
-133 33 132 134 31
-134 34 133 135 32
-135 33 35 134 136
-136 34 36 135 137
-137 35 37 136 138
-138 36 38 137 139
-139 37 39 138 140
-140 38 40 139 141
-141 39 41 140 142
-142 143 40 42 141
-143 144 41 43 142
-144 44 143 145 42
-145 45 144 146 43
-146 44 46 145 147
-147 45 47 146 148
-148 46 48 147 149
-149 47 49 148 150
-150 48 50 149 151
-151 49 51 150 152
-152 50 52 151 153
-153 154 51 53 152
-154 155 52 54 153
-155 55 154 156 53
-156 56 155 157 54
-157 55 57 156 158
-158 56 58 157 159
-159 57 59 158 160
-160 58 60 159 161
-161 59 61 160 162
-162 60 62 161 163
-163 61 63 162 164
-164 165 62 64 163
-165 166 63 65 164
-166 66 165 167 64
-167 67 166 168 65
-168 66 68 167 169
-169 67 69 168 170
-170 68 70 169 171
-171 69 71 170 172
-172 70 72 171 173
-173 71 73 172 174
-174 72 74 173 175
-175 176 73 75 174
-176 177 74 76 175
-177 77 176 178 75
-178 78 177 179 76
-179 77 79 178 180
-180 78 80 179 181
-181 79 81 180 182
-182 80 82 181 183
-183 81 83 182 184
-184 82 84 183 185
-185 83 85 184 186
-186 187 84 86 185
-187 188 85 87 186
-188 88 187 189 86
-189 89 188 190 87
-190 88 90 189 191
-191 89 91 190 192
-192 90 92 191 193
-193 91 93 192 194
-194 92 94 193 195
-195 93 95 194 196
-196 94 96 195 197
-197 198 95 97 196
-198 199 96 98 197
-199 99 198 200 97
-200 100 199 201 98
-201 99 101 200 202
-202 1 100 102 201
0