[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 202, 2 ] =
C_202(1,91).
(I) Following is a form readable by MAGMA:
g:=Graph<202|{ {2, 3}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192,
193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181},
{178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166,
167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {74, 75}, {72,
73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56,
57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {4, 5}, {6, 7}, {8, 9},
{10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25},
{26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41},
{42, 43}, {44, 45}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87},
{88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102,
103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115},
{116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128,
129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141},
{142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154,
155}, {1, 2}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181,
182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158},
{73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46},
{5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34},
{37, 38}, {41, 42}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98},
{101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125,
126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150},
{153, 154}, {3, 4}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164},
{67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44},
{75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124},
{131, 132}, {139, 140}, {147, 148}, {155, 156}, {7, 8}, {199, 200}, {183, 184},
{167, 168}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {119,
120}, {135, 136}, {151, 152}, {15, 16}, {175, 176}, {47, 48}, {79, 80}, {111,
112}, {143, 144}, {31, 32}, {159, 160}, {95, 96}, {4, 95}, {32, 123}, {36, 127},
{1, 92}, {3, 94}, {33, 124}, {35, 126}, {2, 93}, {34, 125}, {5, 96}, {7, 98},
{13, 104}, {15, 106}, {21, 112}, {23, 114}, {29, 120}, {31, 122}, {6, 97}, {14,
105}, {22, 113}, {30, 121}, {8, 99}, {12, 103}, {24, 115}, {28, 119}, {9, 100},
{11, 102}, {25, 116}, {27, 118}, {10, 101}, {16, 127}, {26, 117}, {1, 112}, {3,
114}, {5, 116}, {7, 118}, {9, 120}, {11, 122}, {13, 124}, {15, 126}, {2, 113},
{6, 117}, {10, 121}, {14, 125}, {4, 115}, {12, 123}, {16, 107}, {20, 111}, {17,
108}, {19, 110}, {8, 119}, {191, 192}, {63, 64}, {18, 109}, {17, 128}, {63,
174}, {61, 172}, {59, 170}, {57, 168}, {55, 166}, {53, 164}, {51, 162}, {49,
160}, {19, 130}, {21, 132}, {23, 134}, {25, 136}, {27, 138}, {29, 140}, {31,
142}, {81, 192}, {83, 194}, {85, 196}, {87, 198}, {89, 200}, {91, 202}, {18,
129}, {62, 173}, {58, 169}, {54, 165}, {50, 161}, {22, 133}, {26, 137}, {30,
141}, {82, 193}, {86, 197}, {90, 201}, {20, 131}, {60, 171}, {52, 163}, {28,
139}, {84, 195}, {24, 135}, {56, 167}, {88, 199}, {37, 128}, {63, 154}, {61,
152}, {55, 146}, {53, 144}, {47, 138}, {45, 136}, {39, 130}, {101, 192}, {103,
194}, {109, 200}, {111, 202}, {38, 129}, {62, 153}, {54, 145}, {46, 137}, {102,
193}, {110, 201}, {40, 131}, {60, 151}, {56, 147}, {44, 135}, {104, 195}, {108,
199}, {41, 132}, {59, 150}, {57, 148}, {43, 134}, {105, 196}, {107, 198}, {32,
143}, {58, 149}, {48, 159}, {42, 133}, {106, 197}, {33, 144}, {47, 158}, {45,
156}, {35, 146}, {37, 148}, {39, 150}, {41, 152}, {43, 154}, {34, 145}, {46,
157}, {38, 149}, {42, 153}, {36, 147}, {44, 155}, {48, 139}, {52, 143}, {49,
140}, {51, 142}, {40, 151}, {50, 141}, {1, 202}, {64, 155}, {68, 159}, {96,
187}, {100, 191}, {65, 156}, {67, 158}, {97, 188}, {99, 190}, {66, 157}, {98,
189}, {69, 160}, {71, 162}, {77, 168}, {79, 170}, {85, 176}, {87, 178}, {93,
184}, {95, 186}, {70, 161}, {78, 169}, {86, 177}, {94, 185}, {72, 163}, {76,
167}, {88, 179}, {92, 183}, {73, 164}, {75, 166}, {89, 180}, {91, 182}, {64,
175}, {74, 165}, {80, 191}, {90, 181}, {65, 176}, {73, 184}, {71, 182}, {69,
180}, {67, 178}, {75, 186}, {77, 188}, {79, 190}, {66, 177}, {74, 185}, {70,
181}, {78, 189}, {68, 179}, {76, 187}, {80, 171}, {84, 175}, {81, 172}, {83,
174}, {72, 183}, {82, 173}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 112, 202, 92)(3, 21, 201, 183)(4, 132, 200, 72)(5, 41, 199, 163)(6, 152,
198, 52)(7, 61, 197, 143)(8, 172, 196, 32)(9, 81, 195, 123)(10, 192, 194,
12)(11, 101, 193, 103)(13, 121, 191, 83)(14, 30, 190, 174)(15, 141, 189, 63)(16,
50, 188, 154)(17, 161, 187, 43)(18, 70, 186, 134)(19, 181, 185, 23)(20, 90, 184,
114)(22, 110, 182, 94)(24, 130, 180, 74)(25, 39, 179, 165)(26, 150, 178, 54)(27,
59, 177, 145)(28, 170, 176, 34)(29, 79, 175, 125)(31, 99, 173, 105)(33, 119,
171, 85)(35, 139, 169, 65)(36, 48, 168, 156)(37, 159, 167, 45)(38, 68, 166,
136)(40, 88, 164, 116)(42, 108, 162, 96)(44, 128, 160, 76)(46, 148, 158, 56)(47,
57, 157, 147)(49, 77, 155, 127)(51, 97, 153, 107)(53, 117, 151, 87)(55, 137,
149, 67)(58, 66, 146, 138)(60, 86, 144, 118)(62, 106, 142, 98)(64, 126, 140,
78)(69, 75, 135, 129)(71, 95, 133, 109)(73, 115, 131, 89)(80, 84, 124, 120)(82,
104, 122, 100)(91, 93, 113, 111)
C4[ 202, 2 ]
202
-1 2 112 92 202
-2 1 3 113 93
-3 2 4 114 94
-4 3 5 115 95
-5 4 6 116 96
-6 5 7 117 97
-7 6 8 118 98
-8 99 7 9 119
-9 100 8 10 120
-10 11 121 101 9
-11 12 122 102 10
-12 11 13 123 103
-13 12 14 124 104
-14 13 15 125 105
-15 14 16 126 106
-16 15 17 127 107
-17 16 18 128 108
-18 17 19 129 109
-19 110 18 20 130
-20 111 19 21 131
-21 22 132 112 20
-22 23 133 113 21
-23 22 24 134 114
-24 23 25 135 115
-25 24 26 136 116
-26 25 27 137 117
-27 26 28 138 118
-28 27 29 139 119
-29 28 30 140 120
-30 121 29 31 141
-31 122 30 32 142
-32 33 143 123 31
-33 34 144 124 32
-34 33 35 145 125
-35 34 36 146 126
-36 35 37 147 127
-37 36 38 148 128
-38 37 39 149 129
-39 38 40 150 130
-40 39 41 151 131
-41 132 40 42 152
-42 133 41 43 153
-43 44 154 134 42
-44 45 155 135 43
-45 44 46 156 136
-46 45 47 157 137
-47 46 48 158 138
-48 47 49 159 139
-49 48 50 160 140
-50 49 51 161 141
-51 50 52 162 142
-52 143 51 53 163
-53 144 52 54 164
-54 55 165 145 53
-55 56 166 146 54
-56 55 57 167 147
-57 56 58 168 148
-58 57 59 169 149
-59 58 60 170 150
-60 59 61 171 151
-61 60 62 172 152
-62 61 63 173 153
-63 154 62 64 174
-64 155 63 65 175
-65 66 176 156 64
-66 67 177 157 65
-67 66 68 178 158
-68 67 69 179 159
-69 68 70 180 160
-70 69 71 181 161
-71 70 72 182 162
-72 71 73 183 163
-73 72 74 184 164
-74 165 73 75 185
-75 166 74 76 186
-76 77 187 167 75
-77 78 188 168 76
-78 77 79 189 169
-79 78 80 190 170
-80 79 81 191 171
-81 80 82 192 172
-82 81 83 193 173
-83 82 84 194 174
-84 83 85 195 175
-85 176 84 86 196
-86 177 85 87 197
-87 88 198 178 86
-88 89 199 179 87
-89 88 90 200 180
-90 89 91 201 181
-91 90 92 202 182
-92 1 91 93 183
-93 2 92 94 184
-94 3 93 95 185
-95 4 94 96 186
-96 187 5 95 97
-97 188 6 96 98
-98 99 189 7 97
-99 100 190 8 98
-100 99 101 191 9
-101 100 102 192 10
-102 11 101 103 193
-103 12 102 104 194
-104 13 103 105 195
-105 14 104 106 196
-106 15 105 107 197
-107 198 16 106 108
-108 199 17 107 109
-109 110 200 18 108
-110 111 201 19 109
-111 110 112 202 20
-112 1 111 113 21
-113 22 2 112 114
-114 23 3 113 115
-115 24 4 114 116
-116 25 5 115 117
-117 26 6 116 118
-118 27 7 117 119
-119 28 8 118 120
-120 121 29 9 119
-121 122 30 10 120
-122 11 121 123 31
-123 12 122 124 32
-124 33 13 123 125
-125 34 14 124 126
-126 35 15 125 127
-127 36 16 126 128
-128 37 17 127 129
-129 38 18 128 130
-130 39 19 129 131
-131 132 40 20 130
-132 133 41 21 131
-133 22 132 134 42
-134 23 133 135 43
-135 44 24 134 136
-136 45 25 135 137
-137 46 26 136 138
-138 47 27 137 139
-139 48 28 138 140
-140 49 29 139 141
-141 50 30 140 142
-142 143 51 31 141
-143 144 52 32 142
-144 33 143 145 53
-145 34 144 146 54
-146 55 35 145 147
-147 56 36 146 148
-148 57 37 147 149
-149 58 38 148 150
-150 59 39 149 151
-151 60 40 150 152
-152 61 41 151 153
-153 154 62 42 152
-154 155 63 43 153
-155 44 154 156 64
-156 45 155 157 65
-157 66 46 156 158
-158 67 47 157 159
-159 68 48 158 160
-160 69 49 159 161
-161 70 50 160 162
-162 71 51 161 163
-163 72 52 162 164
-164 165 73 53 163
-165 166 74 54 164
-166 55 165 167 75
-167 56 166 168 76
-168 77 57 167 169
-169 78 58 168 170
-170 79 59 169 171
-171 80 60 170 172
-172 81 61 171 173
-173 82 62 172 174
-174 83 63 173 175
-175 176 84 64 174
-176 177 85 65 175
-177 66 176 178 86
-178 67 177 179 87
-179 88 68 178 180
-180 89 69 179 181
-181 90 70 180 182
-182 91 71 181 183
-183 92 72 182 184
-184 93 73 183 185
-185 94 74 184 186
-186 187 95 75 185
-187 188 96 76 186
-188 77 187 189 97
-189 78 188 190 98
-190 99 79 189 191
-191 100 80 190 192
-192 101 81 191 193
-193 102 82 192 194
-194 103 83 193 195
-195 104 84 194 196
-196 105 85 195 197
-197 198 106 86 196
-198 199 107 87 197
-199 88 198 200 108
-200 89 199 201 109
-201 110 90 200 202
-202 1 111 91 201
0