[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 203, 1 ] =
C_203(1,57).
(I) Following is a form readable by MAGMA:
g:=Graph<203|{ {2, 3}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194,
195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183},
{180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168,
169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157},
{154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {76, 77}, {74, 75},
{72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59},
{56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43},
{4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20,
21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36,
37}, {38, 39}, {40, 41}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88,
89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103},
{104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116,
117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129},
{130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142,
143}, {144, 145}, {1, 2}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185,
186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162},
{157, 158}, {153, 154}, {149, 150}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57,
58}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21,
22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {77, 78}, {81, 82}, {85,
86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113,
114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138},
{141, 142}, {145, 146}, {3, 4}, {195, 196}, {187, 188}, {179, 180}, {171, 172},
{163, 164}, {155, 156}, {147, 148}, {75, 76}, {67, 68}, {59, 60}, {51, 52}, {43,
44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {83, 84}, {91, 92}, {99, 100},
{107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {7, 8}, {199, 200},
{183, 184}, {167, 168}, {151, 152}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87,
88}, {103, 104}, {119, 120}, {135, 136}, {15, 16}, {175, 176}, {47, 48}, {79,
80}, {111, 112}, {143, 144}, {2, 59}, {70, 127}, {68, 125}, {66, 123}, {64,
121}, {4, 61}, {6, 63}, {128, 185}, {130, 187}, {132, 189}, {134, 191}, {1, 58},
{69, 126}, {65, 122}, {5, 62}, {129, 186}, {133, 190}, {3, 60}, {159, 160}, {67,
124}, {31, 32}, {95, 96}, {131, 188}, {7, 64}, {63, 120}, {55, 112}, {47, 104},
{15, 72}, {23, 80}, {31, 88}, {39, 96}, {135, 192}, {143, 200}, {8, 65}, {62,
119}, {60, 117}, {58, 115}, {56, 113}, {46, 103}, {44, 101}, {42, 99}, {10, 67},
{12, 69}, {14, 71}, {24, 81}, {26, 83}, {28, 85}, {30, 87}, {40, 97}, {136,
193}, {138, 195}, {140, 197}, {142, 199}, {9, 66}, {61, 118}, {57, 114}, {45,
102}, {13, 70}, {25, 82}, {29, 86}, {41, 98}, {137, 194}, {141, 198}, {11, 68},
{59, 116}, {43, 100}, {27, 84}, {139, 196}, {16, 73}, {146, 203}, {54, 111},
{52, 109}, {50, 107}, {48, 105}, {18, 75}, {20, 77}, {22, 79}, {144, 201}, {17,
74}, {53, 110}, {49, 106}, {21, 78}, {145, 202}, {19, 76}, {51, 108}, {32, 89},
{34, 91}, {36, 93}, {38, 95}, {33, 90}, {37, 94}, {35, 92}, {191, 192}, {63,
64}, {1, 147}, {45, 191}, {44, 190}, {4, 150}, {5, 151}, {8, 154}, {9, 155},
{12, 158}, {13, 159}, {32, 178}, {33, 179}, {36, 182}, {37, 183}, {40, 186},
{41, 187}, {2, 148}, {43, 189}, {42, 188}, {3, 149}, {10, 156}, {11, 157}, {34,
180}, {35, 181}, {6, 152}, {7, 153}, {38, 184}, {39, 185}, {14, 160}, {15, 161},
{30, 176}, {31, 177}, {16, 162}, {17, 163}, {20, 166}, {21, 167}, {24, 170},
{25, 171}, {28, 174}, {29, 175}, {18, 164}, {19, 165}, {26, 172}, {27, 173},
{22, 168}, {23, 169}, {71, 128}, {79, 136}, {87, 144}, {95, 152}, {103, 160},
{111, 168}, {119, 176}, {127, 184}, {72, 129}, {74, 131}, {76, 133}, {78, 135},
{88, 145}, {90, 147}, {92, 149}, {94, 151}, {104, 161}, {106, 163}, {108, 165},
{110, 167}, {120, 177}, {122, 179}, {124, 181}, {126, 183}, {1, 203}, {73, 130},
{77, 134}, {89, 146}, {93, 150}, {105, 162}, {109, 166}, {121, 178}, {125, 182},
{75, 132}, {91, 148}, {107, 164}, {123, 180}, {80, 137}, {82, 139}, {84, 141},
{86, 143}, {112, 169}, {114, 171}, {116, 173}, {118, 175}, {81, 138}, {85, 142},
{113, 170}, {117, 174}, {83, 140}, {115, 172}, {46, 192}, {47, 193}, {48, 194},
{57, 203}, {56, 202}, {53, 199}, {52, 198}, {49, 195}, {50, 196}, {51, 197},
{96, 153}, {98, 155}, {100, 157}, {102, 159}, {97, 154}, {101, 158}, {54, 200},
{55, 201}, {99, 156}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 147)(3, 90)(4, 33)(5, 179)(6, 122)(7, 65)(9, 154)(10, 97)(11, 40)(12,
186)(13, 129)(14, 72)(16, 161)(17, 104)(18, 47)(19, 193)(20, 136)(21, 79)(23,
168)(24, 111)(25, 54)(26, 200)(27, 143)(28, 86)(30, 175)(31, 118)(32, 61)(34,
150)(35, 93)(37, 182)(38, 125)(39, 68)(41, 157)(42, 100)(44, 189)(45, 132)(46,
75)(48, 164)(49, 107)(51, 196)(52, 139)(53, 82)(55, 171)(56, 114)(58, 203)(59,
146)(60, 89)(62, 178)(63, 121)(66, 153)(67, 96)(69, 185)(70, 128)(73, 160)(74,
103)(76, 192)(77, 135)(80, 167)(81, 110)(83, 199)(84, 142)(87, 174)(88, 117)(91,
149)(94, 181)(95, 124)(98, 156)(101, 188)(102, 131)(105, 163)(108, 195)(109,
138)(112, 170)(115, 202)(116, 145)(119, 177)(123, 152)(126, 184)(130, 159)(133,
191)(137, 166)(140, 198)(144, 173)(151, 180)(158, 187)(165, 194)(172, 201)
c: (2, 58)(3, 115)(4, 172)(5, 26)(6, 83)(7, 140)(8, 197)(9, 51)(10, 108)(11,
165)(12, 19)(13, 76)(14, 133)(15, 190)(16, 44)(17, 101)(18, 158)(20, 69)(21,
126)(22, 183)(23, 37)(24, 94)(25, 151)(27, 62)(28, 119)(29, 176)(31, 87)(32,
144)(33, 201)(34, 55)(35, 112)(36, 169)(38, 80)(39, 137)(40, 194)(41, 48)(42,
105)(43, 162)(45, 73)(46, 130)(47, 187)(49, 98)(50, 155)(52, 66)(53, 123)(54,
180)(56, 91)(57, 148)(60, 116)(61, 173)(63, 84)(64, 141)(65, 198)(67, 109)(68,
166)(70, 77)(71, 134)(72, 191)(74, 102)(75, 159)(78, 127)(79, 184)(81, 95)(82,
152)(85, 120)(86, 177)(89, 145)(90, 202)(92, 113)(93, 170)(96, 138)(97, 195)(99,
106)(100, 163)(103, 131)(104, 188)(107, 156)(110, 124)(111, 181)(114, 149)(118,
174)(121, 142)(122, 199)(125, 167)(128, 135)(129, 192)(132, 160)(136, 185)(139,
153)(143, 178)(147, 203)(150, 171)(154, 196)(157, 164)(161, 189)(168, 182)(179,
200)(186, 193)
C4[ 203, 1 ]
203
-1 2 58 147 203
-2 1 3 59 148
-3 2 4 60 149
-4 3 5 61 150
-5 4 6 62 151
-6 5 7 63 152
-7 6 8 64 153
-8 154 7 9 65
-9 66 155 8 10
-10 11 67 156 9
-11 12 68 157 10
-12 11 13 69 158
-13 12 14 70 159
-14 13 15 71 160
-15 14 16 72 161
-16 15 17 73 162
-17 16 18 74 163
-18 17 19 75 164
-19 165 18 20 76
-20 77 166 19 21
-21 22 78 167 20
-22 23 79 168 21
-23 22 24 80 169
-24 23 25 81 170
-25 24 26 82 171
-26 25 27 83 172
-27 26 28 84 173
-28 27 29 85 174
-29 28 30 86 175
-30 176 29 31 87
-31 88 177 30 32
-32 33 89 178 31
-33 34 90 179 32
-34 33 35 91 180
-35 34 36 92 181
-36 35 37 93 182
-37 36 38 94 183
-38 37 39 95 184
-39 38 40 96 185
-40 39 41 97 186
-41 187 40 42 98
-42 99 188 41 43
-43 44 100 189 42
-44 45 101 190 43
-45 44 46 102 191
-46 45 47 103 192
-47 46 48 104 193
-48 47 49 105 194
-49 48 50 106 195
-50 49 51 107 196
-51 50 52 108 197
-52 198 51 53 109
-53 110 199 52 54
-54 55 111 200 53
-55 56 112 201 54
-56 55 57 113 202
-57 56 58 114 203
-58 1 57 59 115
-59 2 58 60 116
-60 3 59 61 117
-61 4 60 62 118
-62 5 61 63 119
-63 6 62 64 120
-64 121 7 63 65
-65 66 122 8 64
-66 67 123 9 65
-67 66 68 124 10
-68 11 67 69 125
-69 12 68 70 126
-70 13 69 71 127
-71 14 70 72 128
-72 15 71 73 129
-73 16 72 74 130
-74 17 73 75 131
-75 132 18 74 76
-76 77 133 19 75
-77 78 134 20 76
-78 77 79 135 21
-79 22 78 80 136
-80 23 79 81 137
-81 24 80 82 138
-82 25 81 83 139
-83 26 82 84 140
-84 27 83 85 141
-85 28 84 86 142
-86 143 29 85 87
-87 88 144 30 86
-88 89 145 31 87
-89 88 90 146 32
-90 33 89 91 147
-91 34 90 92 148
-92 35 91 93 149
-93 36 92 94 150
-94 37 93 95 151
-95 38 94 96 152
-96 39 95 97 153
-97 154 40 96 98
-98 99 155 41 97
-99 100 156 42 98
-100 99 101 157 43
-101 44 100 102 158
-102 45 101 103 159
-103 46 102 104 160
-104 47 103 105 161
-105 48 104 106 162
-106 49 105 107 163
-107 50 106 108 164
-108 165 51 107 109
-109 110 166 52 108
-110 111 167 53 109
-111 110 112 168 54
-112 55 111 113 169
-113 56 112 114 170
-114 57 113 115 171
-115 58 114 116 172
-116 59 115 117 173
-117 60 116 118 174
-118 61 117 119 175
-119 176 62 118 120
-120 121 177 63 119
-121 122 178 64 120
-122 121 123 179 65
-123 66 122 124 180
-124 67 123 125 181
-125 68 124 126 182
-126 69 125 127 183
-127 70 126 128 184
-128 71 127 129 185
-129 72 128 130 186
-130 187 73 129 131
-131 132 188 74 130
-132 133 189 75 131
-133 132 134 190 76
-134 77 133 135 191
-135 78 134 136 192
-136 79 135 137 193
-137 80 136 138 194
-138 81 137 139 195
-139 82 138 140 196
-140 83 139 141 197
-141 198 84 140 142
-142 143 199 85 141
-143 144 200 86 142
-144 143 145 201 87
-145 88 144 146 202
-146 89 145 147 203
-147 1 90 146 148
-148 2 91 147 149
-149 3 92 148 150
-150 4 93 149 151
-151 5 94 150 152
-152 6 95 151 153
-153 154 7 96 152
-154 155 8 97 153
-155 154 156 9 98
-156 99 155 157 10
-157 11 100 156 158
-158 12 101 157 159
-159 13 102 158 160
-160 14 103 159 161
-161 15 104 160 162
-162 16 105 161 163
-163 17 106 162 164
-164 165 18 107 163
-165 166 19 108 164
-166 165 167 20 109
-167 110 166 168 21
-168 22 111 167 169
-169 23 112 168 170
-170 24 113 169 171
-171 25 114 170 172
-172 26 115 171 173
-173 27 116 172 174
-174 28 117 173 175
-175 176 29 118 174
-176 177 30 119 175
-177 176 178 31 120
-178 121 177 179 32
-179 33 122 178 180
-180 34 123 179 181
-181 35 124 180 182
-182 36 125 181 183
-183 37 126 182 184
-184 38 127 183 185
-185 39 128 184 186
-186 187 40 129 185
-187 188 41 130 186
-188 187 189 42 131
-189 132 188 190 43
-190 44 133 189 191
-191 45 134 190 192
-192 46 135 191 193
-193 47 136 192 194
-194 48 137 193 195
-195 49 138 194 196
-196 50 139 195 197
-197 198 51 140 196
-198 199 52 141 197
-199 198 200 53 142
-200 143 199 201 54
-201 55 144 200 202
-202 56 145 201 203
-203 1 57 146 202
0