C4graphGraph forms for C4 [ 204, 3 ] = C_204(1,67)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 204, 3 ] = C_204(1,67).

(I) Following is a form readable by MAGMA:

g:=Graph<204|{ {2, 3}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {1, 2}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {3, 4}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {67, 68}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {7, 8}, {199, 200}, {183, 184}, {167, 168}, {151, 152}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {15, 16}, {175, 176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {31, 32}, {159, 160}, {95, 96}, {4, 71}, {60, 127}, {56, 123}, {52, 119}, {48, 115}, {44, 111}, {8, 75}, {12, 79}, {16, 83}, {20, 87}, {24, 91}, {28, 95}, {32, 99}, {36, 103}, {40, 107}, {128, 195}, {132, 199}, {136, 203}, {1, 68}, {59, 126}, {57, 124}, {51, 118}, {49, 116}, {43, 110}, {3, 70}, {9, 76}, {11, 78}, {17, 84}, {19, 86}, {25, 92}, {27, 94}, {33, 100}, {35, 102}, {41, 108}, {129, 196}, {131, 198}, {137, 204}, {2, 69}, {58, 125}, {50, 117}, {42, 109}, {10, 77}, {18, 85}, {26, 93}, {34, 101}, {130, 197}, {5, 72}, {55, 122}, {53, 120}, {7, 74}, {21, 88}, {23, 90}, {37, 104}, {39, 106}, {133, 200}, {135, 202}, {6, 73}, {54, 121}, {22, 89}, {38, 105}, {134, 201}, {13, 80}, {47, 114}, {45, 112}, {15, 82}, {14, 81}, {46, 113}, {29, 96}, {31, 98}, {30, 97}, {191, 192}, {63, 64}, {2, 139}, {66, 203}, {64, 201}, {54, 191}, {52, 189}, {50, 187}, {48, 185}, {4, 141}, {6, 143}, {16, 153}, {18, 155}, {20, 157}, {22, 159}, {32, 169}, {34, 171}, {36, 173}, {38, 175}, {1, 138}, {65, 202}, {53, 190}, {49, 186}, {5, 142}, {17, 154}, {21, 158}, {33, 170}, {37, 174}, {3, 140}, {67, 204}, {51, 188}, {19, 156}, {35, 172}, {7, 144}, {47, 184}, {15, 152}, {39, 176}, {8, 145}, {46, 183}, {44, 181}, {42, 179}, {10, 147}, {12, 149}, {14, 151}, {40, 177}, {9, 146}, {45, 182}, {13, 150}, {41, 178}, {11, 148}, {43, 180}, {23, 160}, {31, 168}, {24, 161}, {26, 163}, {28, 165}, {30, 167}, {25, 162}, {29, 166}, {61, 128}, {63, 130}, {125, 192}, {127, 194}, {27, 164}, {62, 129}, {126, 193}, {64, 131}, {68, 135}, {72, 139}, {76, 143}, {80, 147}, {84, 151}, {88, 155}, {92, 159}, {96, 163}, {100, 167}, {104, 171}, {108, 175}, {112, 179}, {116, 183}, {120, 187}, {124, 191}, {65, 132}, {67, 134}, {73, 140}, {75, 142}, {81, 148}, {83, 150}, {89, 156}, {91, 158}, {97, 164}, {99, 166}, {105, 172}, {107, 174}, {113, 180}, {115, 182}, {121, 188}, {123, 190}, {66, 133}, {74, 141}, {82, 149}, {90, 157}, {98, 165}, {106, 173}, {114, 181}, {122, 189}, {1, 204}, {71, 138}, {69, 136}, {85, 152}, {87, 154}, {101, 168}, {103, 170}, {117, 184}, {119, 186}, {70, 137}, {86, 153}, {102, 169}, {118, 185}, {77, 144}, {79, 146}, {109, 176}, {111, 178}, {78, 145}, {110, 177}, {55, 192}, {63, 200}, {56, 193}, {62, 199}, {60, 197}, {58, 195}, {57, 194}, {61, 198}, {93, 160}, {95, 162}, {59, 196}, {94, 161}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204)
b: (2, 68)(3, 135)(4, 202)(5, 65)(6, 132)(7, 199)(8, 62)(9, 129)(10, 196)(11, 59)(12, 126)(13, 193)(14, 56)(15, 123)(16, 190)(17, 53)(18, 120)(19, 187)(20, 50)(21, 117)(22, 184)(23, 47)(24, 114)(25, 181)(26, 44)(27, 111)(28, 178)(29, 41)(30, 108)(31, 175)(32, 38)(33, 105)(34, 172)(36, 102)(37, 169)(39, 99)(40, 166)(42, 96)(43, 163)(45, 93)(46, 160)(48, 90)(49, 157)(51, 87)(52, 154)(54, 84)(55, 151)(57, 81)(58, 148)(60, 78)(61, 145)(63, 75)(64, 142)(66, 72)(67, 139)(70, 136)(71, 203)(73, 133)(74, 200)(76, 130)(77, 197)(79, 127)(80, 194)(82, 124)(83, 191)(85, 121)(86, 188)(88, 118)(89, 185)(91, 115)(92, 182)(94, 112)(95, 179)(97, 109)(98, 176)(100, 106)(101, 173)(104, 170)(107, 167)(110, 164)(113, 161)(116, 158)(119, 155)(122, 152)(125, 149)(128, 146)(131, 143)(134, 140)(138, 204)(141, 201)(144, 198)(147, 195)(150, 192)(153, 189)(156, 186)(159, 183)(162, 180)(165, 177)(168, 174)
c: (2, 138)(3, 71)(5, 141)(6, 74)(8, 144)(9, 77)(11, 147)(12, 80)(14, 150)(15, 83)(17, 153)(18, 86)(20, 156)(21, 89)(23, 159)(24, 92)(26, 162)(27, 95)(29, 165)(30, 98)(32, 168)(33, 101)(35, 171)(36, 104)(38, 174)(39, 107)(41, 177)(42, 110)(44, 180)(45, 113)(47, 183)(48, 116)(50, 186)(51, 119)(53, 189)(54, 122)(56, 192)(57, 125)(59, 195)(60, 128)(62, 198)(63, 131)(65, 201)(66, 134)(68, 204)(69, 137)(72, 140)(75, 143)(78, 146)(81, 149)(84, 152)(87, 155)(90, 158)(93, 161)(96, 164)(99, 167)(102, 170)(105, 173)(108, 176)(111, 179)(114, 182)(117, 185)(120, 188)(123, 191)(126, 194)(129, 197)(132, 200)(135, 203)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 204, 3 ]
204
-1 2 68 138 204
-2 1 3 69 139
-3 2 4 70 140
-4 3 5 71 141
-5 4 6 72 142
-6 143 5 7 73
-7 144 6 8 74
-8 145 7 9 75
-9 146 8 10 76
-10 11 77 147 9
-11 12 78 148 10
-12 11 13 79 149
-13 12 14 80 150
-14 13 15 81 151
-15 14 16 82 152
-16 15 17 83 153
-17 154 16 18 84
-18 155 17 19 85
-19 156 18 20 86
-20 157 19 21 87
-21 22 88 158 20
-22 23 89 159 21
-23 22 24 90 160
-24 23 25 91 161
-25 24 26 92 162
-26 25 27 93 163
-27 26 28 94 164
-28 165 27 29 95
-29 166 28 30 96
-30 167 29 31 97
-31 168 30 32 98
-32 33 99 169 31
-33 34 100 170 32
-34 33 35 101 171
-35 34 36 102 172
-36 35 37 103 173
-37 36 38 104 174
-38 37 39 105 175
-39 176 38 40 106
-40 177 39 41 107
-41 178 40 42 108
-42 179 41 43 109
-43 44 110 180 42
-44 45 111 181 43
-45 44 46 112 182
-46 45 47 113 183
-47 46 48 114 184
-48 47 49 115 185
-49 48 50 116 186
-50 187 49 51 117
-51 188 50 52 118
-52 189 51 53 119
-53 190 52 54 120
-54 55 121 191 53
-55 56 122 192 54
-56 55 57 123 193
-57 56 58 124 194
-58 57 59 125 195
-59 58 60 126 196
-60 59 61 127 197
-61 198 60 62 128
-62 199 61 63 129
-63 200 62 64 130
-64 201 63 65 131
-65 66 132 202 64
-66 67 133 203 65
-67 66 68 134 204
-68 1 67 69 135
-69 2 68 70 136
-70 3 69 71 137
-71 4 70 72 138
-72 5 71 73 139
-73 6 72 74 140
-74 7 73 75 141
-75 8 74 76 142
-76 77 143 9 75
-77 78 144 10 76
-78 11 77 79 145
-79 12 78 80 146
-80 13 79 81 147
-81 14 80 82 148
-82 15 81 83 149
-83 16 82 84 150
-84 17 83 85 151
-85 18 84 86 152
-86 19 85 87 153
-87 88 154 20 86
-88 89 155 21 87
-89 22 88 90 156
-90 23 89 91 157
-91 24 90 92 158
-92 25 91 93 159
-93 26 92 94 160
-94 27 93 95 161
-95 28 94 96 162
-96 29 95 97 163
-97 30 96 98 164
-98 99 165 31 97
-99 100 166 32 98
-100 33 99 101 167
-101 34 100 102 168
-102 35 101 103 169
-103 36 102 104 170
-104 37 103 105 171
-105 38 104 106 172
-106 39 105 107 173
-107 40 106 108 174
-108 41 107 109 175
-109 110 176 42 108
-110 111 177 43 109
-111 44 110 112 178
-112 45 111 113 179
-113 46 112 114 180
-114 47 113 115 181
-115 48 114 116 182
-116 49 115 117 183
-117 50 116 118 184
-118 51 117 119 185
-119 52 118 120 186
-120 121 187 53 119
-121 122 188 54 120
-122 55 121 123 189
-123 56 122 124 190
-124 57 123 125 191
-125 58 124 126 192
-126 59 125 127 193
-127 60 126 128 194
-128 61 127 129 195
-129 62 128 130 196
-130 63 129 131 197
-131 132 198 64 130
-132 133 199 65 131
-133 66 132 134 200
-134 67 133 135 201
-135 68 134 136 202
-136 69 135 137 203
-137 70 136 138 204
-138 1 71 137 139
-139 2 72 138 140
-140 3 73 139 141
-141 4 74 140 142
-142 143 5 75 141
-143 144 6 76 142
-144 77 143 145 7
-145 78 144 146 8
-146 79 145 147 9
-147 80 146 148 10
-148 11 81 147 149
-149 12 82 148 150
-150 13 83 149 151
-151 14 84 150 152
-152 15 85 151 153
-153 154 16 86 152
-154 155 17 87 153
-155 88 154 156 18
-156 89 155 157 19
-157 90 156 158 20
-158 91 157 159 21
-159 22 92 158 160
-160 23 93 159 161
-161 24 94 160 162
-162 25 95 161 163
-163 26 96 162 164
-164 165 27 97 163
-165 166 28 98 164
-166 99 165 167 29
-167 100 166 168 30
-168 101 167 169 31
-169 102 168 170 32
-170 33 103 169 171
-171 34 104 170 172
-172 35 105 171 173
-173 36 106 172 174
-174 37 107 173 175
-175 176 38 108 174
-176 177 39 109 175
-177 110 176 178 40
-178 111 177 179 41
-179 112 178 180 42
-180 113 179 181 43
-181 44 114 180 182
-182 45 115 181 183
-183 46 116 182 184
-184 47 117 183 185
-185 48 118 184 186
-186 187 49 119 185
-187 188 50 120 186
-188 121 187 189 51
-189 122 188 190 52
-190 123 189 191 53
-191 124 190 192 54
-192 55 125 191 193
-193 56 126 192 194
-194 57 127 193 195
-195 58 128 194 196
-196 59 129 195 197
-197 198 60 130 196
-198 199 61 131 197
-199 132 198 200 62
-200 133 199 201 63
-201 134 200 202 64
-202 135 201 203 65
-203 66 136 202 204
-204 1 67 137 203
0

**************