C4graphGraph forms for C4 [ 204, 4 ] = {4,4}_<20,14>

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 204, 4 ] = {4,4}_<20,14>.

(I) Following is a form readable by MAGMA:

g:=Graph<204|{ {2, 3}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {1, 2}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {3, 4}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {67, 68}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {7, 8}, {199, 200}, {183, 184}, {167, 168}, {151, 152}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {15, 16}, {175, 176}, {47, 48}, {79, 80}, {111, 112}, {143, 144}, {31, 32}, {159, 160}, {95, 96}, {33, 103}, {57, 127}, {56, 126}, {49, 119}, {48, 118}, {40, 110}, {41, 111}, {34, 104}, {55, 125}, {54, 124}, {51, 121}, {50, 120}, {35, 105}, {38, 108}, {39, 109}, {36, 106}, {53, 123}, {52, 122}, {37, 107}, {42, 112}, {47, 117}, {46, 116}, {43, 113}, {44, 114}, {45, 115}, {1, 103}, {8, 110}, {9, 111}, {16, 118}, {17, 119}, {24, 126}, {25, 127}, {1, 102}, {2, 104}, {3, 105}, {6, 108}, {7, 109}, {18, 120}, {19, 121}, {22, 124}, {23, 125}, {4, 106}, {5, 107}, {20, 122}, {21, 123}, {10, 112}, {11, 113}, {14, 116}, {15, 117}, {12, 114}, {13, 115}, {63, 64}, {191, 192}, {26, 128}, {63, 165}, {62, 164}, {59, 161}, {58, 160}, {27, 129}, {30, 132}, {31, 133}, {90, 192}, {91, 193}, {94, 196}, {95, 197}, {28, 130}, {61, 163}, {60, 162}, {29, 131}, {92, 194}, {93, 195}, {32, 134}, {57, 159}, {56, 158}, {49, 151}, {48, 150}, {33, 135}, {40, 142}, {41, 143}, {96, 198}, {97, 199}, {34, 136}, {55, 157}, {54, 156}, {51, 153}, {50, 152}, {35, 137}, {38, 140}, {39, 141}, {98, 200}, {99, 201}, {102, 204}, {103, 204}, {1, 173}, {2, 174}, {3, 175}, {16, 188}, {17, 189}, {18, 190}, {19, 191}, {36, 138}, {53, 155}, {52, 154}, {37, 139}, {100, 202}, {101, 203}, {4, 176}, {5, 177}, {6, 178}, {7, 179}, {12, 184}, {13, 185}, {14, 186}, {15, 187}, {42, 144}, {63, 133}, {62, 132}, {59, 129}, {58, 128}, {47, 149}, {46, 148}, {43, 145}, {8, 180}, {9, 181}, {10, 182}, {11, 183}, {44, 146}, {61, 131}, {60, 130}, {45, 147}, {64, 134}, {65, 135}, {72, 142}, {73, 143}, {80, 150}, {81, 151}, {88, 158}, {89, 159}, {96, 166}, {97, 167}, {66, 136}, {70, 140}, {67, 137}, {71, 141}, {82, 152}, {83, 153}, {86, 156}, {87, 157}, {98, 168}, {99, 169}, {102, 172}, {68, 138}, {69, 139}, {84, 154}, {85, 155}, {100, 170}, {101, 171}, {20, 192}, {21, 193}, {22, 194}, {23, 195}, {28, 200}, {29, 201}, {30, 202}, {31, 203}, {74, 144}, {75, 145}, {78, 148}, {79, 149}, {24, 196}, {25, 197}, {26, 198}, {27, 199}, {76, 146}, {77, 147}, {64, 166}, {65, 167}, {72, 174}, {73, 175}, {80, 182}, {81, 183}, {88, 190}, {89, 191}, {66, 168}, {70, 172}, {67, 169}, {71, 173}, {82, 184}, {83, 185}, {86, 188}, {87, 189}, {32, 204}, {68, 170}, {69, 171}, {84, 186}, {85, 187}, {74, 176}, {75, 177}, {78, 180}, {79, 181}, {90, 160}, {91, 161}, {94, 164}, {95, 165}, {76, 178}, {77, 179}, {92, 162}, {93, 163}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 102)(3, 101)(4, 100)(5, 99)(6, 98)(7, 97)(8, 96)(9, 95)(10, 94)(11, 93)(12, 92)(13, 91)(14, 90)(15, 89)(16, 88)(17, 87)(18, 86)(19, 85)(20, 84)(21, 83)(22, 82)(23, 81)(24, 80)(25, 79)(26, 78)(27, 77)(28, 76)(29, 75)(30, 74)(31, 73)(32, 72)(33, 71)(34, 70)(35, 69)(36, 68)(37, 67)(38, 66)(39, 65)(40, 64)(41, 63)(42, 62)(43, 61)(44, 60)(45, 59)(46, 58)(47, 57)(48, 56)(49, 55)(50, 54)(51, 53)(103, 173)(104, 172)(105, 171)(106, 170)(107, 169)(108, 168)(109, 167)(110, 166)(111, 165)(112, 164)(113, 163)(114, 162)(115, 161)(116, 160)(117, 159)(118, 158)(119, 157)(120, 156)(121, 155)(122, 154)(123, 153)(124, 152)(125, 151)(126, 150)(127, 149)(128, 148)(129, 147)(130, 146)(131, 145)(132, 144)(133, 143)(134, 142)(135, 141)(136, 140)(137, 139)(174, 204)(175, 203)(176, 202)(177, 201)(178, 200)(179, 199)(180, 198)(181, 197)(182, 196)(183, 195)(184, 194)(185, 193)(186, 192)(187, 191)(188, 190)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102)(103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204)
c: (2, 173)(3, 71)(4, 141)(5, 39)(6, 109)(8, 179)(9, 77)(10, 147)(11, 45)(12, 115)(14, 185)(15, 83)(16, 153)(17, 51)(18, 121)(20, 191)(21, 89)(22, 159)(23, 57)(24, 127)(26, 197)(27, 95)(28, 165)(29, 63)(30, 133)(32, 203)(33, 101)(34, 171)(35, 69)(36, 139)(38, 107)(40, 177)(41, 75)(42, 145)(44, 113)(46, 183)(47, 81)(48, 151)(50, 119)(52, 189)(53, 87)(54, 157)(56, 125)(58, 195)(59, 93)(60, 163)(62, 131)(64, 201)(65, 99)(66, 169)(68, 137)(70, 105)(72, 175)(74, 143)(76, 111)(78, 181)(80, 149)(82, 117)(84, 187)(86, 155)(88, 123)(90, 193)(92, 161)(94, 129)(96, 199)(98, 167)(100, 135)(102, 103)(104, 172)(106, 140)(110, 178)(112, 146)(116, 184)(118, 152)(122, 190)(124, 158)(128, 196)(130, 164)(134, 202)(136, 170)(142, 176)(148, 182)(154, 188)(160, 194)(166, 200)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 204, 4 ]
204
-1 2 102 103 173
-2 1 3 104 174
-3 2 4 105 175
-4 176 3 5 106
-5 177 4 6 107
-6 178 5 7 108
-7 179 6 8 109
-8 110 180 7 9
-9 111 181 8 10
-10 11 112 182 9
-11 12 113 183 10
-12 11 13 114 184
-13 12 14 115 185
-14 13 15 116 186
-15 187 14 16 117
-16 188 15 17 118
-17 189 16 18 119
-18 190 17 19 120
-19 121 191 18 20
-20 122 192 19 21
-21 22 123 193 20
-22 23 124 194 21
-23 22 24 125 195
-24 23 25 126 196
-25 24 26 127 197
-26 198 25 27 128
-27 199 26 28 129
-28 200 27 29 130
-29 201 28 30 131
-30 132 202 29 31
-31 133 203 30 32
-32 33 134 204 31
-33 34 135 103 32
-34 33 35 136 104
-35 34 36 137 105
-36 35 37 138 106
-37 36 38 139 107
-38 37 39 140 108
-39 38 40 141 109
-40 110 39 41 142
-41 143 111 40 42
-42 144 112 41 43
-43 44 145 113 42
-44 45 146 114 43
-45 44 46 147 115
-46 45 47 148 116
-47 46 48 149 117
-48 47 49 150 118
-49 48 50 151 119
-50 49 51 152 120
-51 121 50 52 153
-52 154 122 51 53
-53 155 123 52 54
-54 55 156 124 53
-55 56 157 125 54
-56 55 57 158 126
-57 56 58 159 127
-58 57 59 160 128
-59 58 60 161 129
-60 59 61 162 130
-61 60 62 163 131
-62 132 61 63 164
-63 165 133 62 64
-64 166 134 63 65
-65 66 167 135 64
-66 67 168 136 65
-67 66 68 169 137
-68 67 69 170 138
-69 68 70 171 139
-70 69 71 172 140
-71 70 72 173 141
-72 71 73 174 142
-73 143 72 74 175
-74 176 144 73 75
-75 177 145 74 76
-76 77 178 146 75
-77 78 179 147 76
-78 77 79 180 148
-79 78 80 181 149
-80 79 81 182 150
-81 80 82 183 151
-82 81 83 184 152
-83 82 84 185 153
-84 154 83 85 186
-85 187 155 84 86
-86 188 156 85 87
-87 88 189 157 86
-88 89 190 158 87
-89 88 90 191 159
-90 89 91 192 160
-91 90 92 193 161
-92 91 93 194 162
-93 92 94 195 163
-94 93 95 196 164
-95 165 94 96 197
-96 198 166 95 97
-97 199 167 96 98
-98 99 200 168 97
-99 100 201 169 98
-100 99 101 202 170
-101 100 102 203 171
-102 1 101 204 172
-103 33 1 104 204
-104 34 2 103 105
-105 35 3 104 106
-106 36 4 105 107
-107 37 5 106 108
-108 38 6 107 109
-109 110 39 7 108
-110 111 40 8 109
-111 110 112 41 9
-112 111 113 42 10
-113 11 112 114 43
-114 44 12 113 115
-115 45 13 114 116
-116 46 14 115 117
-117 47 15 116 118
-118 48 16 117 119
-119 49 17 118 120
-120 121 50 18 119
-121 122 51 19 120
-122 121 123 52 20
-123 122 124 53 21
-124 22 123 125 54
-125 55 23 124 126
-126 56 24 125 127
-127 57 25 126 128
-128 58 26 127 129
-129 59 27 128 130
-130 60 28 129 131
-131 132 61 29 130
-132 133 62 30 131
-133 132 134 63 31
-134 133 135 64 32
-135 33 134 136 65
-136 66 34 135 137
-137 67 35 136 138
-138 68 36 137 139
-139 69 37 138 140
-140 70 38 139 141
-141 71 39 140 142
-142 143 72 40 141
-143 144 73 41 142
-144 143 145 74 42
-145 144 146 75 43
-146 44 145 147 76
-147 77 45 146 148
-148 78 46 147 149
-149 79 47 148 150
-150 80 48 149 151
-151 81 49 150 152
-152 82 50 151 153
-153 154 83 51 152
-154 155 84 52 153
-155 154 156 85 53
-156 155 157 86 54
-157 55 156 158 87
-158 88 56 157 159
-159 89 57 158 160
-160 90 58 159 161
-161 91 59 160 162
-162 92 60 161 163
-163 93 61 162 164
-164 165 94 62 163
-165 166 95 63 164
-166 165 167 96 64
-167 166 168 97 65
-168 66 167 169 98
-169 99 67 168 170
-170 100 68 169 171
-171 101 69 170 172
-172 102 70 171 173
-173 1 71 172 174
-174 2 72 173 175
-175 176 3 73 174
-176 177 4 74 175
-177 176 178 5 75
-178 177 179 6 76
-179 77 178 180 7
-180 78 179 181 8
-181 79 180 182 9
-182 80 181 183 10
-183 11 81 182 184
-184 12 82 183 185
-185 13 83 184 186
-186 187 14 84 185
-187 188 15 85 186
-188 187 189 16 86
-189 188 190 17 87
-190 88 189 191 18
-191 89 190 192 19
-192 90 191 193 20
-193 91 192 194 21
-194 22 92 193 195
-195 23 93 194 196
-196 24 94 195 197
-197 198 25 95 196
-198 199 26 96 197
-199 198 200 27 97
-200 199 201 28 98
-201 99 200 202 29
-202 100 201 203 30
-203 101 202 204 31
-204 102 103 203 32
0

**************