C4graphGraph forms for C4 [ 204, 7 ] = PS(4,51;4)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 204, 7 ] = PS(4,51;4).

(I) Following is a form readable by MAGMA:

g:=Graph<204|{ {99, 103}, {51, 52}, {100, 104}, {102, 106}, {101, 105}, {138, 154}, {143, 159}, {142, 158}, {141, 157}, {140, 156}, {139, 155}, {128, 163}, {152, 187}, {148, 183}, {144, 179}, {140, 175}, {136, 171}, {132, 167}, {129, 164}, {153, 188}, {147, 182}, {145, 180}, {139, 174}, {137, 172}, {131, 166}, {130, 165}, {146, 181}, {138, 173}, {133, 168}, {151, 186}, {149, 184}, {135, 170}, {64, 111}, {150, 185}, {134, 169}, {80, 127}, {144, 160}, {153, 169}, {152, 168}, {151, 167}, {150, 166}, {149, 165}, {148, 164}, {147, 163}, {146, 162}, {145, 161}, {65, 112}, {79, 126}, {77, 124}, {75, 122}, {73, 120}, {71, 118}, {67, 114}, {69, 116}, {4, 54}, {13, 63}, {12, 62}, {9, 59}, {8, 58}, {5, 55}, {66, 113}, {78, 125}, {74, 121}, {70, 117}, {1, 53}, {11, 63}, {10, 62}, {9, 61}, {8, 60}, {3, 55}, {2, 54}, {2, 52}, {11, 61}, {10, 60}, {3, 53}, {64, 119}, {76, 123}, {72, 127}, {68, 115}, {65, 120}, {71, 126}, {69, 124}, {67, 122}, {66, 121}, {70, 125}, {4, 56}, {7, 59}, {6, 58}, {5, 57}, {141, 176}, {143, 178}, {6, 56}, {7, 57}, {68, 123}, {142, 177}, {72, 119}, {128, 195}, {136, 203}, {132, 199}, {129, 196}, {137, 204}, {131, 198}, {130, 197}, {57, 112}, {59, 114}, {61, 116}, {63, 118}, {58, 113}, {62, 117}, {12, 64}, {31, 83}, {30, 82}, {29, 81}, {28, 80}, {15, 67}, {14, 66}, {13, 65}, {44, 96}, {45, 97}, {46, 98}, {47, 99}, {133, 200}, {135, 202}, {14, 64}, {31, 81}, {30, 80}, {15, 65}, {46, 96}, {47, 97}, {60, 115}, {134, 201}, {57, 104}, {59, 106}, {61, 108}, {63, 110}, {16, 66}, {29, 79}, {28, 78}, {25, 75}, {24, 74}, {21, 71}, {20, 70}, {17, 67}, {48, 98}, {49, 99}, {58, 105}, {62, 109}, {16, 68}, {27, 79}, {26, 78}, {25, 77}, {24, 76}, {19, 71}, {18, 70}, {17, 69}, {48, 100}, {49, 101}, {50, 102}, {18, 68}, {27, 77}, {26, 76}, {19, 69}, {50, 100}, {51, 101}, {56, 111}, {60, 107}, {53, 108}, {55, 110}, {54, 109}, {20, 72}, {23, 75}, {22, 74}, {21, 73}, {22, 72}, {23, 73}, {52, 107}, {56, 103}, {1, 102}, {32, 82}, {33, 83}, {36, 86}, {37, 87}, {40, 90}, {41, 91}, {44, 94}, {45, 95}, {32, 84}, {33, 85}, {34, 86}, {35, 87}, {40, 92}, {41, 93}, {42, 94}, {43, 95}, {34, 84}, {35, 85}, {42, 92}, {43, 93}, {36, 88}, {37, 89}, {38, 90}, {39, 91}, {38, 88}, {39, 89}, {16, 156}, {32, 172}, {19, 159}, {18, 158}, {17, 157}, {33, 173}, {34, 174}, {35, 175}, {48, 188}, {49, 189}, {50, 190}, {51, 191}, {45, 160}, {47, 162}, {46, 161}, {48, 163}, {14, 154}, {15, 155}, {36, 176}, {37, 177}, {38, 178}, {39, 179}, {44, 184}, {45, 185}, {46, 186}, {47, 187}, {49, 164}, {51, 166}, {50, 165}, {40, 180}, {41, 181}, {42, 182}, {43, 183}, {52, 150}, {53, 151}, {1, 167}, {25, 191}, {24, 190}, {17, 183}, {16, 182}, {9, 175}, {8, 174}, {2, 168}, {111, 197}, {110, 196}, {107, 193}, {106, 192}, {23, 189}, {22, 188}, {19, 185}, {18, 184}, {7, 173}, {6, 172}, {3, 169}, {4, 170}, {109, 195}, {108, 194}, {21, 187}, {20, 186}, {5, 171}, {54, 152}, {55, 153}, {40, 155}, {44, 159}, {20, 160}, {31, 171}, {30, 170}, {29, 169}, {28, 168}, {23, 163}, {22, 162}, {21, 161}, {41, 156}, {43, 158}, {112, 198}, {113, 199}, {42, 157}, {10, 176}, {118, 204}, {115, 201}, {114, 200}, {15, 181}, {14, 180}, {11, 177}, {24, 164}, {27, 167}, {26, 166}, {25, 165}, {39, 154}, {127, 194}, {125, 192}, {12, 178}, {117, 203}, {116, 202}, {13, 179}, {126, 193}, {1, 192}, {13, 204}, {11, 202}, {9, 200}, {7, 198}, {5, 196}, {3, 194}, {2, 193}, {124, 191}, {120, 187}, {116, 183}, {112, 179}, {108, 175}, {104, 171}, {10, 201}, {6, 197}, {105, 172}, {123, 190}, {121, 188}, {115, 182}, {113, 180}, {107, 174}, {4, 195}, {122, 189}, {114, 181}, {106, 173}, {12, 203}, {73, 128}, {95, 150}, {93, 148}, {91, 146}, {89, 144}, {79, 134}, {77, 132}, {75, 130}, {74, 129}, {94, 149}, {90, 145}, {78, 133}, {103, 170}, {119, 186}, {117, 184}, {8, 199}, {118, 185}, {92, 147}, {76, 131}, {81, 128}, {95, 142}, {93, 140}, {91, 138}, {89, 136}, {87, 134}, {85, 132}, {83, 130}, {82, 129}, {94, 141}, {90, 137}, {86, 133}, {104, 190}, {105, 191}, {80, 135}, {92, 139}, {88, 143}, {84, 131}, {81, 136}, {87, 142}, {85, 140}, {83, 138}, {26, 192}, {103, 189}, {31, 197}, {30, 196}, {27, 193}, {82, 137}, {86, 141}, {109, 176}, {127, 162}, {125, 160}, {111, 178}, {28, 194}, {29, 195}, {84, 139}, {126, 161}, {110, 177}, {88, 135}, {120, 155}, {124, 159}, {121, 156}, {123, 158}, {32, 198}, {33, 199}, {122, 157}, {34, 200}, {35, 201}, {38, 204}, {119, 154}, {36, 202}, {37, 203}, {96, 143}, {97, 144}, {101, 148}, {99, 146}, {98, 145}, {102, 149}, {96, 151}, {100, 147}, {97, 152}, {98, 153} }>;

(II) A more general form is to represent the graph as the orbit of {99, 103} under the group generated by the following permutations:

a: (2, 51)(3, 50)(4, 49)(5, 48)(6, 47)(7, 46)(8, 45)(9, 44)(10, 43)(11, 42)(12, 41)(13, 40)(14, 39)(15, 38)(16, 37)(17, 36)(18, 35)(19, 34)(20, 33)(21, 32)(22, 31)(23, 30)(24, 29)(25, 28)(26, 27)(53, 102)(54, 101)(55, 100)(56, 99)(57, 98)(58, 97)(59, 96)(60, 95)(61, 94)(62, 93)(63, 92)(64, 91)(65, 90)(66, 89)(67, 88)(68, 87)(69, 86)(70, 85)(71, 84)(72, 83)(73, 82)(74, 81)(75, 80)(76, 79)(77, 78)(104, 153)(105, 152)(106, 151)(107, 150)(108, 149)(109, 148)(110, 147)(111, 146)(112, 145)(113, 144)(114, 143)(115, 142)(116, 141)(117, 140)(118, 139)(119, 138)(120, 137)(121, 136)(122, 135)(123, 134)(124, 133)(125, 132)(126, 131)(127, 130)(128, 129)(155, 204)(156, 203)(157, 202)(158, 201)(159, 200)(160, 199)(161, 198)(162, 197)(163, 196)(164, 195)(165, 194)(166, 193)(167, 192)(168, 191)(169, 190)(170, 189)(171, 188)(172, 187)(173, 186)(174, 185)(175, 184)(176, 183)(177, 182)(178, 181)(179, 180)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51)(52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102)(103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153)(154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204)
c: (1, 52, 103, 154)(2, 99, 119, 192)(3, 95, 135, 179)(4, 91, 151, 166)(5, 87, 116, 204)(6, 83, 132, 191)(7, 79, 148, 178)(8, 75, 113, 165)(9, 71, 129, 203)(10, 67, 145, 190)(11, 63, 110, 177)(12, 59, 126, 164)(13, 55, 142, 202)(14, 102, 107, 189)(15, 98, 123, 176)(16, 94, 139, 163)(17, 90, 104, 201)(18, 86, 120, 188)(19, 82, 136, 175)(20, 78, 152, 162)(21, 74, 117, 200)(22, 70, 133, 187)(23, 66, 149, 174)(24, 62, 114, 161)(25, 58, 130, 199)(26, 54, 146, 186)(27, 101, 111, 173)(28, 97, 127, 160)(29, 93, 143, 198)(30, 89, 108, 185)(31, 85, 124, 172)(32, 81, 140, 159)(33, 77, 105, 197)(34, 73, 121, 184)(35, 69, 137, 171)(36, 65, 153, 158)(37, 61, 118, 196)(38, 57, 134, 183)(39, 53, 150, 170)(40, 100, 115, 157)(41, 96, 131, 195)(42, 92, 147, 182)(43, 88, 112, 169)(44, 84, 128, 156)(45, 80, 144, 194)(46, 76, 109, 181)(47, 72, 125, 168)(48, 68, 141, 155)(49, 64, 106, 193)(50, 60, 122, 180)(51, 56, 138, 167)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 204, 7 ]
204
-1 167 102 192 53
-2 168 193 52 54
-3 55 169 194 53
-4 56 170 195 54
-5 55 57 171 196
-6 56 58 172 197
-7 198 57 59 173
-8 199 58 60 174
-9 200 59 61 175
-10 176 201 60 62
-11 177 202 61 63
-12 178 203 62 64
-13 179 204 63 65
-14 66 154 180 64
-15 67 155 181 65
-16 66 68 156 182
-17 67 69 157 183
-18 68 70 158 184
-19 69 71 159 185
-20 70 72 160 186
-21 187 71 73 161
-22 188 72 74 162
-23 189 73 75 163
-24 190 74 76 164
-25 77 165 191 75
-26 78 166 192 76
-27 77 79 167 193
-28 78 80 168 194
-29 79 81 169 195
-30 80 82 170 196
-31 81 83 171 197
-32 198 82 84 172
-33 199 83 85 173
-34 200 84 86 174
-35 201 85 87 175
-36 88 176 202 86
-37 89 177 203 87
-38 88 90 178 204
-39 154 89 91 179
-40 155 90 92 180
-41 156 91 93 181
-42 157 92 94 182
-43 158 93 95 183
-44 159 94 96 184
-45 160 95 97 185
-46 161 96 98 186
-47 99 187 162 97
-48 100 188 163 98
-49 99 101 189 164
-50 165 100 102 190
-51 166 101 191 52
-52 2 51 150 107
-53 1 3 151 108
-54 2 4 152 109
-55 110 3 5 153
-56 111 4 103 6
-57 112 5 104 7
-58 113 6 105 8
-59 114 7 106 9
-60 115 8 107 10
-61 11 116 9 108
-62 12 117 10 109
-63 11 110 13 118
-64 12 111 14 119
-65 13 112 15 120
-66 121 14 113 16
-67 122 15 114 17
-68 123 16 115 18
-69 124 17 116 19
-70 125 18 117 20
-71 126 19 118 21
-72 22 127 20 119
-73 23 128 21 120
-74 22 121 24 129
-75 23 122 25 130
-76 24 123 26 131
-77 132 25 124 27
-78 133 26 125 28
-79 134 27 126 29
-80 135 28 127 30
-81 136 29 128 31
-82 137 30 129 32
-83 33 138 31 130
-84 34 139 32 131
-85 33 132 35 140
-86 34 133 36 141
-87 35 134 37 142
-88 143 36 135 38
-89 144 37 136 39
-90 145 38 137 40
-91 146 39 138 41
-92 147 40 139 42
-93 148 41 140 43
-94 44 149 42 141
-95 45 150 43 142
-96 44 143 46 151
-97 45 144 47 152
-98 46 145 48 153
-99 47 146 103 49
-100 48 147 104 50
-101 49 148 105 51
-102 1 50 149 106
-103 99 56 189 170
-104 100 57 190 171
-105 101 58 191 172
-106 102 59 192 173
-107 60 193 52 174
-108 61 194 53 175
-109 176 62 195 54
-110 55 177 63 196
-111 56 178 64 197
-112 198 57 179 65
-113 66 199 58 180
-114 67 200 59 181
-115 68 201 60 182
-116 69 202 61 183
-117 70 203 62 184
-118 71 204 63 185
-119 154 72 64 186
-120 187 155 73 65
-121 66 188 156 74
-122 67 189 157 75
-123 68 190 158 76
-124 77 69 191 159
-125 78 70 192 160
-126 79 71 193 161
-127 80 72 194 162
-128 81 73 195 163
-129 82 74 196 164
-130 165 83 75 197
-131 198 166 84 76
-132 77 199 167 85
-133 78 200 168 86
-134 79 201 169 87
-135 88 80 202 170
-136 89 81 203 171
-137 90 82 204 172
-138 154 91 83 173
-139 155 92 84 174
-140 156 93 85 175
-141 176 157 94 86
-142 177 158 95 87
-143 88 178 159 96
-144 89 179 160 97
-145 90 180 161 98
-146 99 91 181 162
-147 100 92 182 163
-148 101 93 183 164
-149 165 102 94 184
-150 166 95 52 185
-151 167 96 53 186
-152 187 168 97 54
-153 55 188 169 98
-154 14 39 138 119
-155 15 40 139 120
-156 121 16 41 140
-157 122 17 42 141
-158 123 18 43 142
-159 44 143 124 19
-160 45 144 125 20
-161 46 145 126 21
-162 22 47 146 127
-163 23 48 147 128
-164 24 49 148 129
-165 25 50 149 130
-166 26 51 150 131
-167 132 1 27 151
-168 133 2 28 152
-169 134 3 29 153
-170 135 4 103 30
-171 136 5 104 31
-172 137 6 105 32
-173 33 138 7 106
-174 34 139 8 107
-175 35 140 9 108
-176 36 141 10 109
-177 11 110 37 142
-178 143 12 111 38
-179 144 13 112 39
-180 145 14 113 40
-181 146 15 114 41
-182 147 16 115 42
-183 148 17 116 43
-184 44 149 18 117
-185 45 150 19 118
-186 46 151 20 119
-187 47 152 21 120
-188 22 121 48 153
-189 23 122 103 49
-190 24 123 104 50
-191 25 124 105 51
-192 1 26 125 106
-193 2 27 126 107
-194 3 28 127 108
-195 4 29 128 109
-196 110 5 30 129
-197 111 6 31 130
-198 112 7 32 131
-199 33 132 113 8
-200 34 133 114 9
-201 35 134 115 10
-202 11 36 135 116
-203 12 37 136 117
-204 13 38 137 118
0

**************