[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 204, 9 ] =
Pr_68(1,49,53,33).
(I) Following is a form readable by MAGMA:
g:=Graph<204|{ {2, 3}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56,
57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {4,
5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21},
{22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37},
{38, 39}, {40, 41}, {1, 2}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50},
{45, 46}, {41, 42}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26},
{29, 30}, {33, 34}, {37, 38}, {3, 4}, {67, 68}, {59, 60}, {51, 52}, {43, 44},
{11, 12}, {19, 20}, {27, 28}, {35, 36}, {7, 8}, {55, 56}, {23, 24}, {39, 40},
{64, 83}, {68, 87}, {65, 84}, {67, 86}, {66, 85}, {15, 16}, {47, 48}, {138,
171}, {158, 191}, {156, 189}, {140, 173}, {142, 175}, {144, 177}, {146, 179},
{148, 181}, {150, 183}, {152, 185}, {154, 187}, {137, 170}, {157, 190}, {156,
191}, {140, 175}, {141, 174}, {144, 179}, {145, 178}, {148, 183}, {149, 182},
{152, 187}, {153, 186}, {137, 172}, {139, 174}, {145, 180}, {147, 182}, {153,
188}, {155, 190}, {138, 173}, {139, 172}, {146, 181}, {147, 180}, {154, 189},
{155, 188}, {149, 184}, {151, 186}, {150, 185}, {151, 184}, {128, 181}, {130,
183}, {136, 189}, {129, 182}, {131, 184}, {135, 188}, {132, 185}, {134, 187},
{141, 176}, {143, 178}, {31, 32}, {133, 186}, {142, 177}, {143, 176}, {1, 69},
{59, 127}, {58, 126}, {57, 125}, {56, 124}, {51, 119}, {50, 118}, {49, 117},
{48, 116}, {43, 111}, {42, 110}, {41, 109}, {2, 70}, {3, 71}, {8, 76}, {9, 77},
{10, 78}, {11, 79}, {16, 84}, {17, 85}, {18, 86}, {19, 87}, {24, 92}, {25, 93},
{26, 94}, {27, 95}, {32, 100}, {33, 101}, {34, 102}, {35, 103}, {40, 108}, {128,
196}, {129, 197}, {130, 198}, {131, 199}, {136, 204}, {1, 68}, {4, 72}, {55,
123}, {54, 122}, {53, 121}, {52, 120}, {5, 73}, {6, 74}, {7, 75}, {20, 88}, {21,
89}, {22, 90}, {23, 91}, {36, 104}, {37, 105}, {38, 106}, {39, 107}, {132, 200},
{133, 201}, {134, 202}, {135, 203}, {8, 95}, {40, 127}, {32, 119}, {1, 88}, {3,
90}, {5, 92}, {7, 94}, {33, 120}, {35, 122}, {37, 124}, {39, 126}, {2, 89}, {6,
93}, {34, 121}, {38, 125}, {12, 80}, {47, 115}, {46, 114}, {45, 113}, {44, 112},
{13, 81}, {14, 82}, {15, 83}, {157, 192}, {159, 194}, {4, 91}, {159, 192}, {158,
193}, {36, 123}, {160, 193}, {170, 203}, {168, 201}, {166, 199}, {164, 197},
{162, 195}, {160, 195}, {169, 202}, {168, 203}, {165, 198}, {164, 199}, {161,
194}, {161, 196}, {169, 204}, {163, 198}, {162, 197}, {171, 204}, {163, 196},
{9, 96}, {11, 98}, {13, 100}, {15, 102}, {25, 112}, {27, 114}, {29, 116}, {31,
118}, {10, 97}, {14, 101}, {26, 113}, {30, 117}, {61, 80}, {167, 202}, {165,
200}, {63, 82}, {12, 99}, {167, 200}, {166, 201}, {62, 81}, {28, 115}, {52, 71},
{60, 79}, {56, 75}, {51, 70}, {59, 78}, {57, 76}, {16, 103}, {58, 77}, {50, 69},
{24, 111}, {17, 104}, {19, 106}, {21, 108}, {23, 110}, {18, 105}, {22, 109},
{28, 96}, {29, 97}, {30, 98}, {31, 99}, {53, 72}, {55, 74}, {20, 107}, {63, 64},
{54, 73}, {71, 192}, {79, 200}, {72, 193}, {74, 195}, {76, 197}, {78, 199}, {73,
194}, {77, 198}, {75, 196}, {80, 201}, {82, 203}, {81, 202}, {83, 204}, {41,
128}, {47, 134}, {45, 132}, {43, 130}, {42, 129}, {46, 133}, {44, 131}, {48,
135}, {49, 136}, {60, 128}, {63, 131}, {62, 130}, {61, 129}, {124, 192}, {125,
193}, {126, 194}, {127, 195}, {64, 132}, {75, 143}, {74, 142}, {73, 141}, {72,
140}, {67, 135}, {66, 134}, {65, 133}, {80, 148}, {81, 149}, {82, 150}, {83,
151}, {88, 156}, {89, 157}, {90, 158}, {91, 159}, {96, 164}, {97, 165}, {98,
166}, {99, 167}, {104, 172}, {105, 173}, {106, 174}, {107, 175}, {112, 180},
{113, 181}, {114, 182}, {115, 183}, {120, 188}, {121, 189}, {122, 190}, {123,
191}, {91, 144}, {95, 148}, {107, 160}, {111, 164}, {123, 176}, {127, 180}, {68,
136}, {71, 139}, {70, 138}, {69, 137}, {84, 152}, {85, 153}, {86, 154}, {87,
155}, {100, 168}, {101, 169}, {102, 170}, {103, 171}, {116, 184}, {117, 185},
{118, 186}, {119, 187}, {92, 145}, {94, 147}, {108, 161}, {110, 163}, {124,
177}, {126, 179}, {93, 146}, {109, 162}, {125, 178}, {88, 141}, {90, 143}, {112,
165}, {114, 167}, {120, 173}, {122, 175}, {89, 142}, {113, 166}, {121, 174},
{87, 140}, {115, 168}, {119, 172}, {76, 144}, {77, 145}, {78, 146}, {79, 147},
{108, 176}, {109, 177}, {110, 178}, {111, 179}, {84, 137}, {86, 139}, {116,
169}, {118, 171}, {85, 138}, {117, 170}, {96, 149}, {98, 151}, {104, 157}, {106,
159}, {97, 150}, {105, 158}, {70, 191}, {69, 190}, {99, 152}, {103, 156}, {92,
160}, {93, 161}, {94, 162}, {95, 163}, {100, 153}, {102, 155}, {101, 154}
}>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68)(69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136)(137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 68)(3, 67)(4, 66)(5, 65)(6, 64)(7, 63)(8, 62)(9, 61)(10, 60)(11, 59)(12,
58)(13, 57)(14, 56)(15, 55)(16, 54)(17, 53)(18, 52)(19, 51)(20, 50)(21, 49)(22,
48)(23, 47)(24, 46)(25, 45)(26, 44)(27, 43)(28, 42)(29, 41)(30, 40)(31, 39)(32,
38)(33, 37)(34, 36)(69, 88)(70, 87)(71, 86)(72, 85)(73, 84)(74, 83)(75, 82)(76,
81)(77, 80)(78, 79)(89, 136)(90, 135)(91, 134)(92, 133)(93, 132)(94, 131)(95,
130)(96, 129)(97, 128)(98, 127)(99, 126)(100, 125)(101, 124)(102, 123)(103,
122)(104, 121)(105, 120)(106, 119)(107, 118)(108, 117)(109, 116)(110, 115)(111,
114)(112, 113)(137, 141)(138, 140)(142, 204)(143, 203)(144, 202)(145, 201)(146,
200)(147, 199)(148, 198)(149, 197)(150, 196)(151, 195)(152, 194)(153, 193)(154,
192)(155, 191)(156, 190)(157, 189)(158, 188)(159, 187)(160, 186)(161, 185)(162,
184)(163, 183)(164, 182)(165, 181)(166, 180)(167, 179)(168, 178)(169, 177)(170,
176)(171, 175)(172, 174)
c: (2, 88)(3, 141)(4, 73)(6, 92)(7, 145)(8, 77)(10, 96)(11, 149)(12, 81)(14,
100)(15, 153)(16, 85)(18, 104)(19, 157)(20, 89)(22, 108)(23, 161)(24, 93)(26,
112)(27, 165)(28, 97)(30, 116)(31, 169)(32, 101)(34, 120)(35, 173)(36, 105)(38,
124)(39, 177)(40, 109)(42, 128)(43, 181)(44, 113)(46, 132)(47, 185)(48, 117)(50,
136)(51, 189)(52, 121)(54, 72)(55, 193)(56, 125)(58, 76)(59, 197)(60, 129)(62,
80)(63, 201)(64, 133)(66, 84)(67, 137)(68, 69)(70, 156)(71, 174)(74, 160)(75,
178)(78, 164)(79, 182)(82, 168)(83, 186)(86, 172)(87, 190)(90, 176)(91, 194)(94,
180)(95, 198)(98, 184)(99, 202)(102, 188)(103, 138)(106, 192)(107, 142)(110,
196)(111, 146)(114, 200)(115, 150)(118, 204)(119, 154)(122, 140)(123, 158)(126,
144)(127, 162)(130, 148)(131, 166)(134, 152)(135, 170)
C4[ 204, 9 ]
204
-1 88 2 68 69
-2 1 89 3 70
-3 2 90 4 71
-4 3 91 5 72
-5 4 92 6 73
-6 5 93 7 74
-7 6 94 8 75
-8 7 95 9 76
-9 77 8 96 10
-10 11 78 9 97
-11 12 79 10 98
-12 11 99 13 80
-13 12 100 14 81
-14 13 101 15 82
-15 14 102 16 83
-16 15 103 17 84
-17 16 104 18 85
-18 17 105 19 86
-19 18 106 20 87
-20 88 19 107 21
-21 22 89 20 108
-22 23 90 21 109
-23 22 110 24 91
-24 23 111 25 92
-25 24 112 26 93
-26 25 113 27 94
-27 26 114 28 95
-28 27 115 29 96
-29 28 116 30 97
-30 29 117 31 98
-31 99 30 118 32
-32 33 100 31 119
-33 34 101 32 120
-34 33 121 35 102
-35 34 122 36 103
-36 35 123 37 104
-37 36 124 38 105
-38 37 125 39 106
-39 38 126 40 107
-40 39 127 41 108
-41 40 128 42 109
-42 110 41 129 43
-43 44 111 42 130
-44 45 112 43 131
-45 44 132 46 113
-46 45 133 47 114
-47 46 134 48 115
-48 47 135 49 116
-49 48 136 50 117
-50 69 49 51 118
-51 70 50 52 119
-52 71 51 53 120
-53 121 72 52 54
-54 55 122 73 53
-55 56 123 74 54
-56 55 57 124 75
-57 56 58 125 76
-58 77 57 59 126
-59 78 58 60 127
-60 79 59 61 128
-61 80 60 62 129
-62 81 61 63 130
-63 82 62 64 131
-64 132 83 63 65
-65 66 133 84 64
-66 67 134 85 65
-67 66 68 135 86
-68 1 67 136 87
-69 1 190 137 50
-70 2 191 138 51
-71 3 192 139 52
-72 4 193 140 53
-73 5 194 141 54
-74 55 6 195 142
-75 143 56 7 196
-76 144 57 8 197
-77 198 145 58 9
-78 199 146 59 10
-79 11 200 147 60
-80 12 201 148 61
-81 13 202 149 62
-82 14 203 150 63
-83 15 204 151 64
-84 16 137 152 65
-85 66 17 138 153
-86 154 67 18 139
-87 155 68 19 140
-88 1 156 20 141
-89 2 157 21 142
-90 22 143 3 158
-91 23 144 4 159
-92 24 145 5 160
-93 25 146 6 161
-94 26 147 7 162
-95 27 148 8 163
-96 28 149 9 164
-97 165 29 150 10
-98 11 166 30 151
-99 12 167 31 152
-100 13 168 32 153
-101 33 154 14 169
-102 34 155 15 170
-103 35 156 16 171
-104 36 157 17 172
-105 37 158 18 173
-106 38 159 19 174
-107 39 160 20 175
-108 176 40 161 21
-109 22 177 41 162
-110 23 178 42 163
-111 24 179 43 164
-112 44 165 25 180
-113 45 166 26 181
-114 46 167 27 182
-115 47 168 28 183
-116 48 169 29 184
-117 49 170 30 185
-118 50 171 31 186
-119 187 51 172 32
-120 33 188 52 173
-121 34 189 53 174
-122 35 190 54 175
-123 55 176 36 191
-124 56 177 37 192
-125 57 178 38 193
-126 58 179 39 194
-127 59 180 40 195
-128 60 181 41 196
-129 61 182 42 197
-130 198 62 183 43
-131 44 199 63 184
-132 45 200 64 185
-133 46 201 65 186
-134 66 187 47 202
-135 67 188 48 203
-136 68 189 49 204
-137 69 170 84 172
-138 70 171 85 173
-139 71 172 86 174
-140 72 173 87 175
-141 88 176 73 174
-142 89 177 74 175
-143 176 90 178 75
-144 177 91 179 76
-145 77 178 92 180
-146 78 179 93 181
-147 79 180 94 182
-148 80 181 95 183
-149 81 182 96 184
-150 82 183 97 185
-151 83 184 98 186
-152 99 187 84 185
-153 100 188 85 186
-154 187 101 189 86
-155 188 102 190 87
-156 88 189 103 191
-157 89 190 104 192
-158 90 191 105 193
-159 91 192 106 194
-160 92 193 107 195
-161 93 194 108 196
-162 94 195 109 197
-163 110 198 95 196
-164 111 199 96 197
-165 198 112 200 97
-166 199 113 201 98
-167 99 200 114 202
-168 100 201 115 203
-169 101 202 116 204
-170 102 137 203 117
-171 103 138 204 118
-172 104 137 139 119
-173 105 138 140 120
-174 121 106 139 141
-175 122 107 140 142
-176 143 123 108 141
-177 144 124 109 142
-178 110 143 145 125
-179 111 144 146 126
-180 112 145 147 127
-181 113 146 148 128
-182 114 147 149 129
-183 115 148 150 130
-184 116 149 151 131
-185 132 117 150 152
-186 133 118 151 153
-187 154 134 119 152
-188 155 135 120 153
-189 121 154 156 136
-190 122 155 69 157
-191 123 156 70 158
-192 124 157 71 159
-193 125 158 72 160
-194 126 159 73 161
-195 127 160 74 162
-196 128 161 75 163
-197 129 162 76 164
-198 77 165 130 163
-199 78 166 131 164
-200 132 165 79 167
-201 133 166 80 168
-202 134 167 81 169
-203 135 168 82 170
-204 136 169 83 171
0