[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 204, 11 ] =
SDD(C_51(1,16)).
(I) Following is a form readable by MAGMA:
g:=Graph<204|{ {102, 103}, {96, 103}, {98, 107}, {100, 109}, {102, 108}, {96,
107}, {100, 111}, {96, 110}, {102, 104}, {100, 106}, {99, 108}, {102, 105},
{101, 117}, {98, 115}, {101, 116}, {96, 119}, {97, 118}, {100, 120}, {78, 110},
{93, 125}, {94, 127}, {79, 109}, {88, 122}, {81, 114}, {88, 123}, {83, 119},
{95, 123}, {82, 116}, {94, 121}, {93, 117}, {86, 127}, {88, 113}, {89, 115},
{70, 106}, {95, 114}, {82, 124}, {94, 112}, {70, 118}, {93, 105}, {77, 120},
{79, 121}, {70, 126}, {86, 111}, {82, 104}, {48, 113}, {63, 124}, {57, 112},
{54, 125}, {55, 122}, {39, 126}, {28, 124}, {30, 126}, {29, 125}, {10, 107},
{27, 122}, {18, 115}, {16, 113}, {14, 111}, {12, 109}, {13, 110}, {17, 114}, {2,
103}, {1, 103}, {11, 108}, {1, 105}, {1, 104}, {3, 106}, {2, 107}, {2, 110},
{24, 116}, {6, 106}, {5, 105}, {4, 104}, {3, 111}, {1, 108}, {26, 119}, {24,
117}, {3, 109}, {22, 120}, {25, 118}, {4, 116}, {6, 118}, {5, 117}, {14, 127},
{8, 122}, {9, 123}, {8, 123}, {2, 119}, {12, 121}, {7, 112}, {4, 124}, {7, 127},
{6, 126}, {5, 125}, {8, 113}, {10, 115}, {3, 120}, {9, 114}, {7, 121}, {15,
112}, {31, 159}, {46, 174}, {51, 179}, {64, 192}, {13, 140}, {43, 170}, {39,
166}, {37, 164}, {55, 182}, {62, 191}, {71, 198}, {21, 151}, {43, 169}, {42,
168}, {38, 164}, {30, 156}, {28, 158}, {48, 178}, {68, 199}, {15, 139}, {49,
181}, {63, 187}, {64, 196}, {32, 165}, {45, 168}, {53, 176}, {67, 198}, {19,
149}, {45, 171}, {44, 170}, {38, 160}, {37, 163}, {35, 165}, {47, 169}, {16,
151}, {34, 165}, {66, 197}, {68, 195}, {8, 128}, {36, 172}, {10, 130}, {9, 129},
{54, 190}, {57, 177}, {11, 130}, {12, 133}, {50, 187}, {56, 178}, {74, 192}, {4,
143}, {42, 161}, {20, 159}, {50, 185}, {58, 177}, {67, 200}, {71, 204}, {17,
157}, {18, 158}, {49, 189}, {59, 183}, {21, 152}, {27, 149}, {41, 167}, {40,
166}, {35, 173}, {23, 152}, {67, 204}, {71, 200}, {73, 198}, {19, 131}, {20,
132}, {61, 173}, {22, 135}, {90, 203}, {80, 193}, {40, 185}, {24, 137}, {62,
175}, {11, 153}, {25, 139}, {24, 138}, {15, 156}, {80, 195}, {43, 184}, {21,
134}, {58, 169}, {20, 128}, {83, 199}, {52, 160}, {53, 161}, {54, 162}, {55,
163}, {5, 144}, {44, 185}, {41, 188}, {35, 182}, {26, 143}, {14, 155}, {7, 146},
{33, 183}, {6, 145}, {44, 187}, {40, 191}, {37, 178}, {19, 132}, {13, 154}, {38,
190}, {92, 196}, {90, 194}, {50, 170}, {36, 189}, {80, 201}, {9, 147}, {42,
176}, {12, 150}, {54, 172}, {18, 137}, {56, 163}, {17, 141}, {80, 204}, {56,
164}, {16, 141}, {87, 202}, {53, 168}, {10, 148}, {84, 202}, {31, 129}, {25,
135}, {18, 140}, {47, 177}, {17, 142}, {90, 197}, {84, 203}, {40, 183}, {39,
184}, {23, 136}, {26, 186}, {34, 131}, {63, 158}, {13, 175}, {23, 181}, {22,
180}, {16, 178}, {55, 149}, {29, 190}, {45, 142}, {32, 131}, {31, 188}, {52,
151}, {33, 133}, {34, 134}, {11, 174}, {57, 156}, {30, 184}, {32, 134}, {53,
147}, {20, 179}, {28, 187}, {48, 151}, {49, 153}, {50, 154}, {51, 155}, {59,
145}, {31, 180}, {35, 136}, {52, 152}, {58, 150}, {27, 182}, {36, 138}, {33,
145}, {36, 148}, {29, 172}, {52, 134}, {57, 139}, {21, 160}, {23, 162}, {44,
154}, {22, 161}, {19, 171}, {30, 166}, {27, 163}, {42, 147}, {47, 150}, {39,
156}, {41, 146}, {32, 157}, {48, 141}, {14, 176}, {46, 144}, {25, 167}, {15,
177}, {59, 133}, {29, 162}, {34, 157}, {65, 129}, {72, 136}, {85, 148}, {78,
140}, {84, 144}, {91, 159}, {97, 167}, {89, 158}, {76, 132}, {77, 135}, {79,
133}, {81, 157}, {95, 147}, {94, 146}, {69, 136}, {99, 174}, {93, 144}, {86,
155}, {76, 131}, {72, 152}, {89, 137}, {92, 142}, {28, 200}, {78, 154}, {89,
140}, {70, 145}, {74, 146}, {88, 128}, {76, 149}, {79, 150}, {64, 155}, {91,
128}, {66, 153}, {81, 141}, {83, 143}, {26, 199}, {82, 143}, {65, 159}, {95,
129}, {81, 142}, {91, 132}, {85, 138}, {69, 165}, {98, 130}, {73, 169}, {78,
175}, {99, 130}, {73, 170}, {46, 202}, {46, 203}, {86, 176}, {97, 135}, {37,
194}, {76, 171}, {33, 201}, {91, 179}, {85, 189}, {69, 173}, {41, 192}, {87,
190}, {83, 186}, {45, 196}, {72, 162}, {97, 139}, {68, 175}, {38, 202}, {101,
137}, {77, 161}, {43, 198}, {74, 167}, {75, 166}, {47, 193}, {101, 138}, {60,
204}, {73, 184}, {59, 201}, {75, 185}, {51, 192}, {87, 164}, {64, 179}, {69,
182}, {49, 197}, {92, 168}, {75, 191}, {60, 201}, {65, 180}, {61, 203}, {98,
148}, {74, 188}, {51, 196}, {92, 171}, {90, 173}, {87, 160}, {63, 200}, {66,
181}, {61, 197}, {62, 199}, {85, 172}, {77, 180}, {67, 186}, {56, 194}, {99,
153}, {84, 174}, {58, 193}, {68, 191}, {75, 183}, {60, 193}, {62, 195}, {65,
188}, {71, 186}, {72, 181}, {60, 195}, {61, 194}, {66, 189} }>;
(II) A more general form is to represent the graph as the orbit of {102, 103}
under the group generated by the following permutations:
a: (9, 95) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (29, 54)
c: (3, 100)
d: (18, 89)
e: (45, 92)
f: (26, 83)
g: (11, 99)
h: (43, 73)
m: (25, 97)
n1: (23, 72)
a1: (62, 68)
b1: (12, 79)
c1: (49, 66)
d1: (27, 55)
e1: (6, 70)
f1: (2, 4)(3, 7)(5, 11)(6, 15)(9, 20)(10, 24)(13, 28)(16, 27)(17, 19)(21,
35)(22, 41)(29, 49)(33, 47)(38, 61)(40, 43)(42, 51)(48, 55)(52, 69)(53, 64)(54,
66)(57, 70)(58, 59)(62, 67)(63, 78)(68, 71)(73, 75)(74, 77)(76, 81)(82, 96)(87,
90)(91, 95)(93, 99)(94, 100)(98, 101)(103, 104)(105, 108)(106, 112)(107,
116)(109, 121)(110, 124)(111, 127)(113, 122)(114, 132)(115, 137)(117, 130)(118,
139)(119, 143)(120, 146)(123, 128)(125, 153)(126, 156)(129, 159)(131, 157)(133,
150)(134, 165)(135, 167)(136, 152)(138, 148)(140, 158)(141, 149)(142, 171)(144,
174)(145, 177)(147, 179)(151, 182)(154, 187)(155, 176)(160, 173)(161, 192)(162,
181)(163, 178)(164, 194)(166, 184)(168, 196)(169, 183)(170, 185)(172, 189)(175,
200)(180, 188)(186, 199)(190, 197)(191, 198)(193, 201)(195, 204)(202, 203)
g1: (31, 65)
h1: (36, 85)
m1: (2, 96)
n2: (38, 87)
a2: (17, 81)
b2: (10, 98)
c2: (14, 86)
d2: (47, 58)
e2: (37, 56)
f2: (60, 80)
g2: (41, 74)
h2: (28, 63)
m2: (35, 69)
n3: (2, 5)(3, 9)(4, 11)(6, 17)(7, 20)(8, 12)(10, 24)(13, 29)(14, 31)(15, 19)(16,
33)(18, 36)(21, 40)(22, 42)(23, 44)(25, 45)(26, 46)(27, 47)(28, 49)(30, 32)(34,
39)(35, 43)(37, 60)(38, 62)(41, 51)(48, 59)(50, 72)(52, 75)(53, 77)(54, 78)(55,
58)(56, 80)(57, 76)(61, 67)(63, 66)(64, 74)(65, 86)(68, 87)(69, 73)(70, 81)(71,
90)(79, 88)(82, 99)(83, 84)(85, 89)(91, 94)(92, 97)(93, 96)(95, 100)(98,
101)(103, 105)(104, 108)(106, 114)(107, 117)(109, 123)(110, 125)(111, 129)(112,
132)(113, 133)(115, 138)(116, 130)(118, 142)(119, 144)(120, 147)(121, 128)(122,
150)(124, 153)(126, 157)(127, 159)(131, 156)(134, 166)(135, 168)(136, 170)(137,
148)(139, 171)(140, 172)(141, 145)(143, 174)(146, 179)(149, 177)(151, 183)(152,
185)(154, 162)(155, 188)(158, 189)(160, 191)(163, 193)(164, 195)(165, 184)(167,
196)(169, 182)(173, 198)(175, 190)(176, 180)(178, 201)(181, 187)(186, 203)(194,
204)(197, 200)(199, 202)
a3: (33, 59)
b3: (67, 71)
c3: (15, 57)
d3: (4, 82)
e3: (51, 64)
f3: (19, 76)
g3: (20, 91)
h3: (8, 88)
m3: (46, 84)
n4: (32, 34)
a4: (13, 78)
b4: (42, 53)
c4: (5, 93)
d4: (44, 50)
e4: (21, 52)
f4: (61, 90)
g4: (7, 94)
h4: (1, 2)(3, 8)(4, 10)(5, 13)(6, 16)(7, 19)(9, 22)(11, 26)(12, 27)(14, 20)(15,
32)(17, 25)(18, 24)(21, 30)(23, 43)(28, 36)(29, 44)(31, 42)(33, 37)(34, 57)(35,
47)(38, 40)(39, 52)(41, 45)(46, 62)(48, 70)(49, 67)(50, 54)(53, 65)(55, 79)(56,
59)(58, 69)(60, 61)(63, 85)(66, 71)(68, 84)(72, 73)(74, 92)(75, 87)(76, 94)(77,
95)(78, 93)(80, 90)(81, 97)(82, 98)(83, 99)(86, 91)(88, 100)(89, 101)(96,
102)(104, 107)(105, 110)(106, 113)(108, 119)(109, 122)(111, 128)(112, 131)(114,
135)(115, 116)(117, 140)(118, 141)(120, 123)(121, 149)(124, 148)(125, 154)(126,
151)(127, 132)(129, 161)(130, 143)(133, 163)(134, 156)(136, 169)(138, 158)(139,
157)(142, 167)(144, 175)(145, 178)(146, 171)(147, 180)(150, 182)(152, 184)(153,
186)(155, 179)(159, 176)(160, 166)(162, 170)(164, 183)(165, 177)(168, 188)(172,
187)(173, 193)(174, 199)(181, 198)(185, 190)(189, 200)(191, 202)(192, 196)(194,
201)(195, 203)(197, 204)
m4: (24, 101)
n5: (40, 75)
a5: (16, 48)
b5: (30, 39)
C4[ 204, 11 ]
204
-1 103 104 105 108
-2 110 103 107 119
-3 111 106 109 120
-4 143 124 104 116
-5 144 125 105 117
-6 145 126 106 118
-7 121 112 146 127
-8 122 123 113 128
-9 123 114 147 129
-10 115 148 107 130
-11 108 130 174 153
-12 121 133 150 109
-13 110 154 140 175
-14 176 111 155 127
-15 177 112 156 139
-16 178 113 151 141
-17 157 114 141 142
-18 158 115 137 140
-19 132 149 171 131
-20 132 179 159 128
-21 134 160 151 152
-22 135 180 161 120
-23 136 181 162 152
-24 137 116 138 117
-25 167 135 139 118
-26 143 199 119 186
-27 122 149 182 163
-28 187 200 124 158
-29 190 125 172 162
-30 166 156 126 184
-31 188 180 159 129
-32 165 134 157 131
-33 133 145 201 183
-34 165 134 157 131
-35 165 136 182 173
-36 189 148 138 172
-37 178 194 163 164
-38 190 202 160 164
-39 166 156 126 184
-40 166 191 183 185
-41 188 167 146 192
-42 176 168 147 161
-43 198 169 170 184
-44 154 187 170 185
-45 168 171 196 142
-46 144 202 203 174
-47 177 169 193 150
-48 178 113 151 141
-49 189 181 153 197
-50 154 187 170 185
-51 155 179 192 196
-52 134 160 151 152
-53 176 168 147 161
-54 190 125 172 162
-55 122 149 182 163
-56 178 194 163 164
-57 177 112 156 139
-58 177 169 193 150
-59 133 145 201 183
-60 201 193 204 195
-61 203 194 173 197
-62 199 191 195 175
-63 187 200 124 158
-64 155 179 192 196
-65 188 180 159 129
-66 189 181 153 197
-67 198 200 204 186
-68 199 191 195 175
-69 165 136 182 173
-70 145 126 106 118
-71 198 200 204 186
-72 136 181 162 152
-73 198 169 170 184
-74 188 167 146 192
-75 166 191 183 185
-76 132 149 171 131
-77 135 180 161 120
-78 110 154 140 175
-79 121 133 150 109
-80 201 193 204 195
-81 157 114 141 142
-82 143 124 104 116
-83 143 199 119 186
-84 144 202 203 174
-85 189 148 138 172
-86 176 111 155 127
-87 190 202 160 164
-88 122 123 113 128
-89 158 115 137 140
-90 203 194 173 197
-91 132 179 159 128
-92 168 171 196 142
-93 144 125 105 117
-94 121 112 146 127
-95 123 114 147 129
-96 110 103 107 119
-97 167 135 139 118
-98 115 148 107 130
-99 108 130 174 153
-100 111 106 109 120
-101 137 116 138 117
-102 103 104 105 108
-103 1 2 102 96
-104 1 102 4 82
-105 1 102 5 93
-106 100 3 70 6
-107 2 96 10 98
-108 11 99 1 102
-109 12 100 79 3
-110 78 2 13 96
-111 100 3 14 86
-112 57 15 94 7
-113 88 48 16 8
-114 81 17 95 9
-115 89 18 10 98
-116 24 101 4 82
-117 24 101 5 93
-118 25 70 6 97
-119 2 26 83 96
-120 22 77 100 3
-121 12 79 94 7
-122 55 88 27 8
-123 88 95 8 9
-124 4 82 28 63
-125 5 93 29 54
-126 70 6 39 30
-127 14 94 7 86
-128 88 91 8 20
-129 95 9 31 65
-130 11 99 10 98
-131 34 19 32 76
-132 91 19 20 76
-133 33 12 79 59
-134 34 52 21 32
-135 22 77 25 97
-136 23 35 69 72
-137 89 24 101 18
-138 24 101 36 85
-139 57 25 15 97
-140 78 89 13 18
-141 48 81 16 17
-142 45 81 92 17
-143 4 26 82 83
-144 46 5 93 84
-145 33 59 70 6
-146 94 7 41 74
-147 95 9 42 53
-148 36 85 10 98
-149 55 27 19 76
-150 12 79 47 58
-151 48 16 52 21
-152 23 72 52 21
-153 11 66 99 49
-154 44 78 13 50
-155 14 51 64 86
-156 57 15 39 30
-157 34 81 17 32
-158 89 28 18 63
-159 91 20 31 65
-160 38 52 21 87
-161 22 77 42 53
-162 23 72 29 54
-163 55 56 37 27
-164 56 37 38 87
-165 34 35 69 32
-166 39 40 30 75
-167 25 41 74 97
-168 45 92 42 53
-169 47 58 73 43
-170 44 50 73 43
-171 45 92 19 76
-172 36 29 85 54
-173 35 90 69 61
-174 11 99 46 84
-175 78 13 68 62
-176 14 42 53 86
-177 57 47 58 15
-178 56 37 48 16
-179 91 51 20 64
-180 22 77 31 65
-181 66 23 49 72
-182 55 35 69 27
-183 33 59 40 75
-184 39 73 30 43
-185 44 50 40 75
-186 67 26 71 83
-187 44 28 50 63
-188 41 74 31 65
-189 66 36 49 85
-190 38 29 54 87
-191 68 40 62 75
-192 51 41 74 64
-193 47 58 80 60
-194 56 90 37 61
-195 68 80 60 62
-196 45 92 51 64
-197 66 90 49 61
-198 67 71 73 43
-199 68 26 83 62
-200 67 71 28 63
-201 33 80 59 60
-202 46 38 84 87
-203 46 90 61 84
-204 67 80 60 71
0