C4graphGraph forms for C4 [ 208, 2 ] = C_208(1,25)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 208, 2 ] = C_208(1,25).

(I) Following is a form readable by MAGMA:

g:=Graph<208|{ {2, 3}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {1, 2}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {3, 4}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {7, 8}, {199, 200}, {183, 184}, {167, 168}, {87, 88}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {2, 27}, {166, 191}, {164, 189}, {162, 187}, {70, 95}, {68, 93}, {66, 91}, {64, 89}, {4, 29}, {6, 31}, {32, 57}, {34, 59}, {36, 61}, {38, 63}, {96, 121}, {98, 123}, {100, 125}, {102, 127}, {128, 153}, {130, 155}, {132, 157}, {134, 159}, {160, 185}, {1, 26}, {165, 190}, {69, 94}, {65, 90}, {5, 30}, {33, 58}, {37, 62}, {97, 122}, {101, 126}, {129, 154}, {133, 158}, {161, 186}, {3, 28}, {207, 208}, {175, 176}, {163, 188}, {79, 80}, {67, 92}, {15, 16}, {35, 60}, {47, 48}, {99, 124}, {111, 112}, {131, 156}, {143, 144}, {7, 32}, {87, 112}, {79, 104}, {71, 96}, {15, 40}, {23, 48}, {31, 56}, {95, 120}, {135, 160}, {143, 168}, {151, 176}, {159, 184}, {8, 33}, {90, 115}, {88, 113}, {78, 103}, {76, 101}, {74, 99}, {72, 97}, {10, 35}, {12, 37}, {14, 39}, {24, 49}, {26, 51}, {28, 53}, {30, 55}, {92, 117}, {94, 119}, {136, 161}, {138, 163}, {140, 165}, {142, 167}, {152, 177}, {154, 179}, {156, 181}, {158, 183}, {9, 34}, {89, 114}, {77, 102}, {73, 98}, {13, 38}, {25, 50}, {29, 54}, {93, 118}, {137, 162}, {141, 166}, {153, 178}, {157, 182}, {11, 36}, {91, 116}, {75, 100}, {27, 52}, {139, 164}, {155, 180}, {16, 41}, {86, 111}, {84, 109}, {82, 107}, {80, 105}, {18, 43}, {20, 45}, {22, 47}, {144, 169}, {146, 171}, {148, 173}, {150, 175}, {17, 42}, {85, 110}, {81, 106}, {21, 46}, {145, 170}, {149, 174}, {19, 44}, {83, 108}, {31, 32}, {95, 96}, {147, 172}, {159, 160}, {39, 64}, {183, 208}, {175, 200}, {167, 192}, {63, 88}, {55, 80}, {47, 72}, {40, 65}, {174, 199}, {172, 197}, {170, 195}, {168, 193}, {62, 87}, {60, 85}, {58, 83}, {56, 81}, {42, 67}, {44, 69}, {46, 71}, {41, 66}, {173, 198}, {169, 194}, {61, 86}, {57, 82}, {45, 70}, {43, 68}, {171, 196}, {59, 84}, {48, 73}, {182, 207}, {180, 205}, {178, 203}, {176, 201}, {54, 79}, {50, 75}, {52, 77}, {49, 74}, {181, 206}, {177, 202}, {53, 78}, {51, 76}, {191, 192}, {179, 204}, {63, 64}, {8, 191}, {1, 184}, {3, 186}, {5, 188}, {7, 190}, {2, 185}, {6, 189}, {4, 187}, {9, 192}, {11, 194}, {13, 196}, {15, 198}, {25, 208}, {10, 193}, {14, 197}, {12, 195}, {1, 208}, {16, 199}, {24, 207}, {17, 200}, {19, 202}, {21, 204}, {23, 206}, {18, 201}, {22, 205}, {20, 203}, {103, 128}, {111, 136}, {119, 144}, {127, 152}, {104, 129}, {106, 131}, {108, 133}, {110, 135}, {120, 145}, {122, 147}, {124, 149}, {126, 151}, {105, 130}, {109, 134}, {121, 146}, {125, 150}, {107, 132}, {123, 148}, {112, 137}, {114, 139}, {116, 141}, {118, 143}, {113, 138}, {117, 142}, {115, 140}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 184)(3, 159)(4, 134)(5, 109)(6, 84)(7, 59)(8, 34)(10, 192)(11, 167)(12, 142)(13, 117)(14, 92)(15, 67)(16, 42)(18, 200)(19, 175)(20, 150)(21, 125)(22, 100)(23, 75)(24, 50)(26, 208)(27, 183)(28, 158)(29, 133)(30, 108)(31, 83)(32, 58)(35, 191)(36, 166)(37, 141)(38, 116)(39, 91)(40, 66)(43, 199)(44, 174)(45, 149)(46, 124)(47, 99)(48, 74)(51, 207)(52, 182)(53, 157)(54, 132)(55, 107)(56, 82)(60, 190)(61, 165)(62, 140)(63, 115)(64, 90)(68, 198)(69, 173)(70, 148)(71, 123)(72, 98)(76, 206)(77, 181)(78, 156)(79, 131)(80, 106)(85, 189)(86, 164)(87, 139)(88, 114)(93, 197)(94, 172)(95, 147)(96, 122)(101, 205)(102, 180)(103, 155)(104, 130)(110, 188)(111, 163)(112, 138)(118, 196)(119, 171)(120, 146)(126, 204)(127, 179)(128, 154)(135, 187)(136, 162)(143, 195)(144, 170)(151, 203)(152, 178)(160, 186)(168, 194)(176, 202)
b: (2, 26)(3, 51)(4, 76)(5, 101)(6, 126)(7, 151)(8, 176)(9, 201)(10, 18)(11, 43)(12, 68)(13, 93)(14, 118)(15, 143)(16, 168)(17, 193)(19, 35)(20, 60)(21, 85)(22, 110)(23, 135)(24, 160)(25, 185)(28, 52)(29, 77)(30, 102)(31, 127)(32, 152)(33, 177)(34, 202)(36, 44)(37, 69)(38, 94)(39, 119)(40, 144)(41, 169)(42, 194)(45, 61)(46, 86)(47, 111)(48, 136)(49, 161)(50, 186)(54, 78)(55, 103)(56, 128)(57, 153)(58, 178)(59, 203)(62, 70)(63, 95)(64, 120)(65, 145)(66, 170)(67, 195)(71, 87)(72, 112)(73, 137)(74, 162)(75, 187)(80, 104)(81, 129)(82, 154)(83, 179)(84, 204)(88, 96)(89, 121)(90, 146)(91, 171)(92, 196)(97, 113)(98, 138)(99, 163)(100, 188)(106, 130)(107, 155)(108, 180)(109, 205)(114, 122)(115, 147)(116, 172)(117, 197)(123, 139)(124, 164)(125, 189)(132, 156)(133, 181)(134, 206)(140, 148)(141, 173)(142, 198)(149, 165)(150, 190)(158, 182)(159, 207)(166, 174)(167, 199)(175, 191)(184, 208)(192, 200)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 208, 2 ]
208
-1 2 26 184 208
-2 1 3 27 185
-3 2 4 28 186
-4 187 3 5 29
-5 188 4 6 30
-6 189 5 7 31
-7 190 6 8 32
-8 33 191 7 9
-9 34 192 8 10
-10 11 35 193 9
-11 12 36 194 10
-12 11 13 37 195
-13 12 14 38 196
-14 13 15 39 197
-15 198 14 16 40
-16 199 15 17 41
-17 200 16 18 42
-18 201 17 19 43
-19 44 202 18 20
-20 45 203 19 21
-21 22 46 204 20
-22 23 47 205 21
-23 22 24 48 206
-24 23 25 49 207
-25 24 26 50 208
-26 1 25 27 51
-27 2 26 28 52
-28 3 27 29 53
-29 4 28 30 54
-30 55 5 29 31
-31 56 6 30 32
-32 33 57 7 31
-33 34 58 8 32
-34 33 35 59 9
-35 34 36 60 10
-36 11 35 37 61
-37 12 36 38 62
-38 13 37 39 63
-39 14 38 40 64
-40 15 39 41 65
-41 66 16 40 42
-42 67 17 41 43
-43 44 68 18 42
-44 45 69 19 43
-45 44 46 70 20
-46 45 47 71 21
-47 22 46 48 72
-48 23 47 49 73
-49 24 48 50 74
-50 25 49 51 75
-51 26 50 52 76
-52 77 27 51 53
-53 78 28 52 54
-54 55 79 29 53
-55 56 80 30 54
-56 55 57 81 31
-57 56 58 82 32
-58 33 57 59 83
-59 34 58 60 84
-60 35 59 61 85
-61 36 60 62 86
-62 37 61 63 87
-63 88 38 62 64
-64 89 39 63 65
-65 66 90 40 64
-66 67 91 41 65
-67 66 68 92 42
-68 67 69 93 43
-69 44 68 70 94
-70 45 69 71 95
-71 46 70 72 96
-72 47 71 73 97
-73 48 72 74 98
-74 99 49 73 75
-75 100 50 74 76
-76 77 101 51 75
-77 78 102 52 76
-78 77 79 103 53
-79 78 80 104 54
-80 55 79 81 105
-81 56 80 82 106
-82 57 81 83 107
-83 58 82 84 108
-84 59 83 85 109
-85 110 60 84 86
-86 111 61 85 87
-87 88 112 62 86
-88 89 113 63 87
-89 88 90 114 64
-90 89 91 115 65
-91 66 90 92 116
-92 67 91 93 117
-93 68 92 94 118
-94 69 93 95 119
-95 70 94 96 120
-96 121 71 95 97
-97 122 72 96 98
-98 99 123 73 97
-99 100 124 74 98
-100 99 101 125 75
-101 100 102 126 76
-102 77 101 103 127
-103 78 102 104 128
-104 79 103 105 129
-105 80 104 106 130
-106 81 105 107 131
-107 132 82 106 108
-108 133 83 107 109
-109 110 134 84 108
-110 111 135 85 109
-111 110 112 136 86
-112 111 113 137 87
-113 88 112 114 138
-114 89 113 115 139
-115 90 114 116 140
-116 91 115 117 141
-117 92 116 118 142
-118 143 93 117 119
-119 144 94 118 120
-120 121 145 95 119
-121 122 146 96 120
-122 121 123 147 97
-123 122 124 148 98
-124 99 123 125 149
-125 100 124 126 150
-126 101 125 127 151
-127 102 126 128 152
-128 103 127 129 153
-129 154 104 128 130
-130 155 105 129 131
-131 132 156 106 130
-132 133 157 107 131
-133 132 134 158 108
-134 133 135 159 109
-135 110 134 136 160
-136 111 135 137 161
-137 112 136 138 162
-138 113 137 139 163
-139 114 138 140 164
-140 165 115 139 141
-141 166 116 140 142
-142 143 167 117 141
-143 144 168 118 142
-144 143 145 169 119
-145 144 146 170 120
-146 121 145 147 171
-147 122 146 148 172
-148 123 147 149 173
-149 124 148 150 174
-150 125 149 151 175
-151 176 126 150 152
-152 177 127 151 153
-153 154 178 128 152
-154 155 179 129 153
-155 154 156 180 130
-156 155 157 181 131
-157 132 156 158 182
-158 133 157 159 183
-159 134 158 160 184
-160 135 159 161 185
-161 136 160 162 186
-162 187 137 161 163
-163 188 138 162 164
-164 165 189 139 163
-165 166 190 140 164
-166 165 167 191 141
-167 166 168 192 142
-168 143 167 169 193
-169 144 168 170 194
-170 145 169 171 195
-171 146 170 172 196
-172 147 171 173 197
-173 198 148 172 174
-174 199 149 173 175
-175 176 200 150 174
-176 177 201 151 175
-177 176 178 202 152
-178 177 179 203 153
-179 154 178 180 204
-180 155 179 181 205
-181 156 180 182 206
-182 157 181 183 207
-183 158 182 184 208
-184 1 159 183 185
-185 2 160 184 186
-186 187 3 161 185
-187 188 4 162 186
-188 187 189 5 163
-189 188 190 6 164
-190 165 189 191 7
-191 166 190 192 8
-192 167 191 193 9
-193 168 192 194 10
-194 11 169 193 195
-195 12 170 194 196
-196 13 171 195 197
-197 198 14 172 196
-198 199 15 173 197
-199 198 200 16 174
-200 199 201 17 175
-201 176 200 202 18
-202 177 201 203 19
-203 178 202 204 20
-204 179 203 205 21
-205 22 180 204 206
-206 23 181 205 207
-207 24 182 206 208
-208 1 25 183 207
0

**************