C4graphGraph forms for C4 [ 208, 3 ] = C_208(1,79)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 208, 3 ] = C_208(1,79).

(I) Following is a form readable by MAGMA:

g:=Graph<208|{ {2, 3}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {1, 2}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {3, 4}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {139, 140}, {67, 68}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {7, 8}, {199, 200}, {183, 184}, {167, 168}, {151, 152}, {135, 136}, {55, 56}, {23, 24}, {39, 40}, {71, 72}, {87, 88}, {103, 104}, {119, 120}, {15, 16}, {207, 208}, {175, 176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {31, 32}, {159, 160}, {95, 96}, {16, 95}, {48, 127}, {32, 111}, {128, 207}, {1, 80}, {47, 126}, {45, 124}, {43, 122}, {41, 120}, {3, 82}, {5, 84}, {7, 86}, {9, 88}, {11, 90}, {13, 92}, {15, 94}, {33, 112}, {35, 114}, {37, 116}, {39, 118}, {129, 208}, {2, 81}, {46, 125}, {42, 121}, {6, 85}, {10, 89}, {14, 93}, {34, 113}, {38, 117}, {4, 83}, {44, 123}, {12, 91}, {36, 115}, {8, 87}, {40, 119}, {17, 96}, {19, 98}, {21, 100}, {23, 102}, {25, 104}, {27, 106}, {29, 108}, {31, 110}, {18, 97}, {22, 101}, {26, 105}, {30, 109}, {20, 99}, {28, 107}, {24, 103}, {191, 192}, {63, 64}, {2, 131}, {66, 195}, {64, 193}, {62, 191}, {60, 189}, {58, 187}, {56, 185}, {54, 183}, {52, 181}, {50, 179}, {48, 177}, {46, 175}, {44, 173}, {42, 171}, {40, 169}, {4, 133}, {6, 135}, {8, 137}, {10, 139}, {12, 141}, {14, 143}, {16, 145}, {18, 147}, {20, 149}, {22, 151}, {24, 153}, {26, 155}, {28, 157}, {30, 159}, {32, 161}, {34, 163}, {36, 165}, {38, 167}, {68, 197}, {70, 199}, {72, 201}, {74, 203}, {76, 205}, {78, 207}, {1, 130}, {65, 194}, {61, 190}, {57, 186}, {53, 182}, {49, 178}, {45, 174}, {41, 170}, {5, 134}, {9, 138}, {13, 142}, {17, 146}, {21, 150}, {25, 154}, {29, 158}, {33, 162}, {37, 166}, {69, 198}, {73, 202}, {77, 206}, {3, 132}, {67, 196}, {59, 188}, {51, 180}, {43, 172}, {11, 140}, {19, 148}, {27, 156}, {35, 164}, {75, 204}, {7, 136}, {55, 184}, {23, 152}, {39, 168}, {71, 200}, {15, 144}, {47, 176}, {79, 208}, {49, 128}, {63, 142}, {61, 140}, {59, 138}, {57, 136}, {55, 134}, {53, 132}, {51, 130}, {113, 192}, {115, 194}, {117, 196}, {119, 198}, {121, 200}, {123, 202}, {125, 204}, {127, 206}, {50, 129}, {62, 141}, {58, 137}, {54, 133}, {114, 193}, {118, 197}, {122, 201}, {126, 205}, {52, 131}, {60, 139}, {116, 195}, {124, 203}, {31, 160}, {56, 135}, {120, 199}, {64, 143}, {80, 159}, {96, 175}, {112, 191}, {1, 208}, {67, 146}, {65, 144}, {69, 148}, {71, 150}, {73, 152}, {75, 154}, {77, 156}, {79, 158}, {97, 176}, {99, 178}, {101, 180}, {103, 182}, {105, 184}, {107, 186}, {109, 188}, {111, 190}, {66, 145}, {70, 149}, {74, 153}, {78, 157}, {98, 177}, {102, 181}, {106, 185}, {110, 189}, {68, 147}, {76, 155}, {100, 179}, {108, 187}, {72, 151}, {104, 183}, {81, 160}, {83, 162}, {85, 164}, {87, 166}, {89, 168}, {91, 170}, {93, 172}, {95, 174}, {82, 161}, {86, 165}, {90, 169}, {94, 173}, {84, 163}, {92, 171}, {63, 192}, {88, 167}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 80)(3, 159)(4, 30)(5, 109)(6, 188)(7, 59)(8, 138)(10, 88)(11, 167)(12, 38)(13, 117)(14, 196)(15, 67)(16, 146)(18, 96)(19, 175)(20, 46)(21, 125)(22, 204)(23, 75)(24, 154)(26, 104)(27, 183)(28, 54)(29, 133)(31, 83)(32, 162)(34, 112)(35, 191)(36, 62)(37, 141)(39, 91)(40, 170)(42, 120)(43, 199)(44, 70)(45, 149)(47, 99)(48, 178)(50, 128)(51, 207)(52, 78)(53, 157)(55, 107)(56, 186)(58, 136)(60, 86)(61, 165)(63, 115)(64, 194)(66, 144)(68, 94)(69, 173)(71, 123)(72, 202)(74, 152)(76, 102)(77, 181)(79, 131)(82, 160)(84, 110)(85, 189)(87, 139)(90, 168)(92, 118)(93, 197)(95, 147)(98, 176)(100, 126)(101, 205)(103, 155)(106, 184)(108, 134)(111, 163)(114, 192)(116, 142)(119, 171)(122, 200)(124, 150)(127, 179)(130, 208)(132, 158)(135, 187)(140, 166)(143, 195)(148, 174)(151, 203)(156, 182)(164, 190)(172, 198)(180, 206)
b: (2, 130)(3, 51)(4, 180)(5, 101)(6, 22)(7, 151)(8, 72)(9, 201)(10, 122)(11, 43)(12, 172)(13, 93)(15, 143)(16, 64)(17, 193)(18, 114)(19, 35)(20, 164)(21, 85)(23, 135)(24, 56)(25, 185)(26, 106)(28, 156)(29, 77)(30, 206)(31, 127)(32, 48)(33, 177)(34, 98)(36, 148)(37, 69)(38, 198)(39, 119)(41, 169)(42, 90)(44, 140)(45, 61)(46, 190)(47, 111)(49, 161)(50, 82)(52, 132)(54, 182)(55, 103)(57, 153)(58, 74)(59, 203)(60, 124)(62, 174)(63, 95)(65, 145)(67, 195)(68, 116)(70, 166)(71, 87)(73, 137)(75, 187)(76, 108)(78, 158)(80, 208)(81, 129)(83, 179)(84, 100)(86, 150)(88, 200)(89, 121)(91, 171)(94, 142)(96, 192)(97, 113)(99, 163)(102, 134)(104, 184)(107, 155)(109, 205)(110, 126)(112, 176)(115, 147)(117, 197)(120, 168)(123, 139)(125, 189)(128, 160)(133, 181)(136, 152)(138, 202)(141, 173)(146, 194)(149, 165)(154, 186)(159, 207)(162, 178)(167, 199)(175, 191)(188, 204)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 208, 3 ]
208
-1 2 80 130 208
-2 1 3 81 131
-3 132 2 4 82
-4 133 3 5 83
-5 134 4 6 84
-6 135 5 7 85
-7 136 6 8 86
-8 137 7 9 87
-9 88 138 8 10
-10 11 89 139 9
-11 12 90 140 10
-12 11 13 91 141
-13 12 14 92 142
-14 143 13 15 93
-15 144 14 16 94
-16 145 15 17 95
-17 146 16 18 96
-18 147 17 19 97
-19 148 18 20 98
-20 99 149 19 21
-21 22 100 150 20
-22 23 101 151 21
-23 22 24 102 152
-24 23 25 103 153
-25 154 24 26 104
-26 155 25 27 105
-27 156 26 28 106
-28 157 27 29 107
-29 158 28 30 108
-30 159 29 31 109
-31 110 160 30 32
-32 33 111 161 31
-33 34 112 162 32
-34 33 35 113 163
-35 34 36 114 164
-36 165 35 37 115
-37 166 36 38 116
-38 167 37 39 117
-39 168 38 40 118
-40 169 39 41 119
-41 170 40 42 120
-42 121 171 41 43
-43 44 122 172 42
-44 45 123 173 43
-45 44 46 124 174
-46 45 47 125 175
-47 176 46 48 126
-48 177 47 49 127
-49 178 48 50 128
-50 179 49 51 129
-51 180 50 52 130
-52 181 51 53 131
-53 132 182 52 54
-54 55 133 183 53
-55 56 134 184 54
-56 55 57 135 185
-57 56 58 136 186
-58 187 57 59 137
-59 188 58 60 138
-60 189 59 61 139
-61 190 60 62 140
-62 191 61 63 141
-63 192 62 64 142
-64 143 193 63 65
-65 66 144 194 64
-66 67 145 195 65
-67 66 68 146 196
-68 67 69 147 197
-69 198 68 70 148
-70 199 69 71 149
-71 200 70 72 150
-72 201 71 73 151
-73 202 72 74 152
-74 203 73 75 153
-75 154 204 74 76
-76 77 155 205 75
-77 78 156 206 76
-78 77 79 157 207
-79 78 80 158 208
-80 1 79 81 159
-81 2 80 82 160
-82 3 81 83 161
-83 4 82 84 162
-84 5 83 85 163
-85 6 84 86 164
-86 165 7 85 87
-87 88 166 8 86
-88 89 167 9 87
-89 88 90 168 10
-90 11 89 91 169
-91 12 90 92 170
-92 13 91 93 171
-93 14 92 94 172
-94 15 93 95 173
-95 16 94 96 174
-96 17 95 97 175
-97 176 18 96 98
-98 99 177 19 97
-99 100 178 20 98
-100 99 101 179 21
-101 22 100 102 180
-102 23 101 103 181
-103 24 102 104 182
-104 25 103 105 183
-105 26 104 106 184
-106 27 105 107 185
-107 28 106 108 186
-108 187 29 107 109
-109 110 188 30 108
-110 111 189 31 109
-111 110 112 190 32
-112 33 111 113 191
-113 34 112 114 192
-114 35 113 115 193
-115 36 114 116 194
-116 37 115 117 195
-117 38 116 118 196
-118 39 117 119 197
-119 198 40 118 120
-120 121 199 41 119
-121 122 200 42 120
-122 121 123 201 43
-123 44 122 124 202
-124 45 123 125 203
-125 46 124 126 204
-126 47 125 127 205
-127 48 126 128 206
-128 49 127 129 207
-129 50 128 130 208
-130 1 51 129 131
-131 132 2 52 130
-132 133 3 53 131
-133 132 134 4 54
-134 55 133 135 5
-135 56 134 136 6
-136 57 135 137 7
-137 58 136 138 8
-138 59 137 139 9
-139 60 138 140 10
-140 11 61 139 141
-141 12 62 140 142
-142 143 13 63 141
-143 144 14 64 142
-144 143 145 15 65
-145 66 144 146 16
-146 67 145 147 17
-147 68 146 148 18
-148 69 147 149 19
-149 70 148 150 20
-150 71 149 151 21
-151 22 72 150 152
-152 23 73 151 153
-153 154 24 74 152
-154 155 25 75 153
-155 154 156 26 76
-156 77 155 157 27
-157 78 156 158 28
-158 79 157 159 29
-159 80 158 160 30
-160 81 159 161 31
-161 82 160 162 32
-162 33 83 161 163
-163 34 84 162 164
-164 165 35 85 163
-165 166 36 86 164
-166 165 167 37 87
-167 88 166 168 38
-168 89 167 169 39
-169 90 168 170 40
-170 91 169 171 41
-171 92 170 172 42
-172 93 171 173 43
-173 44 94 172 174
-174 45 95 173 175
-175 176 46 96 174
-176 177 47 97 175
-177 176 178 48 98
-178 99 177 179 49
-179 100 178 180 50
-180 101 179 181 51
-181 102 180 182 52
-182 103 181 183 53
-183 104 182 184 54
-184 55 105 183 185
-185 56 106 184 186
-186 187 57 107 185
-187 188 58 108 186
-188 187 189 59 109
-189 110 188 190 60
-190 111 189 191 61
-191 112 190 192 62
-192 113 191 193 63
-193 114 192 194 64
-194 115 193 195 65
-195 66 116 194 196
-196 67 117 195 197
-197 198 68 118 196
-198 199 69 119 197
-199 198 200 70 120
-200 121 199 201 71
-201 122 200 202 72
-202 123 201 203 73
-203 124 202 204 74
-204 125 203 205 75
-205 126 204 206 76
-206 77 127 205 207
-207 78 128 206 208
-208 1 79 129 207
0

**************