C4graphGraph forms for C4 [ 208, 5 ] = {4,4}_[26,4]

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 208, 5 ] = {4,4}_[26,4].

(I) Following is a form readable by MAGMA:

g:=Graph<208|{ {2, 3}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {142, 143}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {1, 2}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {141, 142}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {3, 4}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {67, 68}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {7, 8}, {199, 200}, {183, 184}, {167, 168}, {151, 152}, {55, 56}, {23, 24}, {39, 40}, {71, 72}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {15, 16}, {207, 208}, {175, 176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {64, 118}, {65, 119}, {72, 126}, {73, 127}, {66, 120}, {67, 121}, {70, 124}, {71, 125}, {68, 122}, {69, 123}, {31, 32}, {159, 160}, {95, 96}, {58, 112}, {63, 117}, {62, 116}, {59, 113}, {60, 114}, {61, 115}, {56, 110}, {57, 111}, {51, 105}, {55, 109}, {54, 108}, {52, 106}, {53, 107}, {1, 105}, {2, 106}, {3, 107}, {4, 108}, {5, 109}, {6, 110}, {7, 111}, {16, 120}, {17, 121}, {18, 122}, {19, 123}, {20, 124}, {21, 125}, {22, 126}, {23, 127}, {1, 104}, {8, 112}, {9, 113}, {10, 114}, {11, 115}, {12, 116}, {13, 117}, {14, 118}, {15, 119}, {63, 64}, {191, 192}, {24, 128}, {63, 167}, {62, 166}, {61, 165}, {60, 164}, {59, 163}, {58, 162}, {57, 161}, {56, 160}, {25, 129}, {26, 130}, {27, 131}, {28, 132}, {29, 133}, {30, 134}, {31, 135}, {88, 192}, {89, 193}, {90, 194}, {91, 195}, {92, 196}, {93, 197}, {94, 198}, {95, 199}, {1, 159}, {32, 190}, {33, 191}, {2, 160}, {3, 161}, {6, 164}, {7, 165}, {10, 168}, {11, 169}, {14, 172}, {15, 173}, {18, 176}, {19, 177}, {22, 180}, {23, 181}, {26, 184}, {27, 185}, {30, 188}, {31, 189}, {4, 162}, {5, 163}, {12, 170}, {13, 171}, {20, 178}, {21, 179}, {28, 186}, {29, 187}, {32, 136}, {55, 159}, {54, 158}, {53, 157}, {52, 156}, {51, 155}, {50, 154}, {49, 153}, {48, 152}, {39, 143}, {33, 137}, {34, 138}, {35, 139}, {36, 140}, {37, 141}, {38, 142}, {96, 200}, {97, 201}, {98, 202}, {99, 203}, {100, 204}, {101, 205}, {102, 206}, {103, 207}, {8, 166}, {9, 167}, {24, 182}, {25, 183}, {40, 144}, {47, 151}, {46, 150}, {45, 149}, {44, 148}, {43, 147}, {42, 146}, {41, 145}, {104, 208}, {105, 208}, {16, 174}, {17, 175}, {74, 128}, {75, 129}, {78, 132}, {79, 133}, {90, 144}, {91, 145}, {94, 148}, {95, 149}, {76, 130}, {77, 131}, {92, 146}, {93, 147}, {80, 134}, {81, 135}, {88, 142}, {89, 143}, {82, 136}, {83, 137}, {86, 140}, {87, 141}, {84, 138}, {85, 139}, {34, 192}, {50, 208}, {47, 205}, {46, 204}, {43, 201}, {42, 200}, {39, 197}, {35, 193}, {38, 196}, {36, 194}, {45, 203}, {44, 202}, {37, 195}, {64, 168}, {68, 172}, {67, 171}, {66, 170}, {65, 169}, {69, 173}, {70, 174}, {71, 175}, {80, 184}, {81, 185}, {82, 186}, {83, 187}, {84, 188}, {85, 189}, {86, 190}, {87, 191}, {40, 198}, {41, 199}, {96, 150}, {97, 151}, {104, 158}, {72, 176}, {73, 177}, {74, 178}, {75, 179}, {76, 180}, {77, 181}, {78, 182}, {79, 183}, {98, 152}, {99, 153}, {102, 156}, {103, 157}, {48, 206}, {49, 207}, {100, 154}, {101, 155}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104)(105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208)
b: (2, 104)(3, 103)(4, 102)(5, 101)(6, 100)(7, 99)(8, 98)(9, 97)(10, 96)(11, 95)(12, 94)(13, 93)(14, 92)(15, 91)(16, 90)(17, 89)(18, 88)(19, 87)(20, 86)(21, 85)(22, 84)(23, 83)(24, 82)(25, 81)(26, 80)(27, 79)(28, 78)(29, 77)(30, 76)(31, 75)(32, 74)(33, 73)(34, 72)(35, 71)(36, 70)(37, 69)(38, 68)(39, 67)(40, 66)(41, 65)(42, 64)(43, 63)(44, 62)(45, 61)(46, 60)(47, 59)(48, 58)(49, 57)(50, 56)(51, 55)(52, 54)(105, 159)(106, 158)(107, 157)(108, 156)(109, 155)(110, 154)(111, 153)(112, 152)(113, 151)(114, 150)(115, 149)(116, 148)(117, 147)(118, 146)(119, 145)(120, 144)(121, 143)(122, 142)(123, 141)(124, 140)(125, 139)(126, 138)(127, 137)(128, 136)(129, 135)(130, 134)(131, 133)(160, 208)(161, 207)(162, 206)(163, 205)(164, 204)(165, 203)(166, 202)(167, 201)(168, 200)(169, 199)(170, 198)(171, 197)(172, 196)(173, 195)(174, 194)(175, 193)(176, 192)(177, 191)(178, 190)(179, 189)(180, 188)(181, 187)(182, 186)(183, 185)
c: (2, 159)(3, 55)(4, 109)(6, 163)(7, 59)(8, 113)(10, 167)(11, 63)(12, 117)(14, 171)(15, 67)(16, 121)(18, 175)(19, 71)(20, 125)(22, 179)(23, 75)(24, 129)(26, 183)(27, 79)(28, 133)(30, 187)(31, 83)(32, 137)(34, 191)(35, 87)(36, 141)(38, 195)(39, 91)(40, 145)(42, 199)(43, 95)(44, 149)(46, 203)(47, 99)(48, 153)(50, 207)(51, 103)(52, 157)(54, 107)(56, 161)(58, 111)(60, 165)(62, 115)(64, 169)(66, 119)(68, 173)(70, 123)(72, 177)(74, 127)(76, 181)(78, 131)(80, 185)(82, 135)(84, 189)(86, 139)(88, 193)(90, 143)(92, 197)(94, 147)(96, 201)(98, 151)(100, 205)(102, 155)(104, 105)(106, 158)(110, 162)(114, 166)(118, 170)(122, 174)(126, 178)(130, 182)(134, 186)(138, 190)(142, 194)(146, 198)(150, 202)(154, 206)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 208, 5 ]
208
-1 2 104 159 105
-2 1 3 160 106
-3 2 4 161 107
-4 3 5 162 108
-5 4 6 163 109
-6 110 5 7 164
-7 165 111 6 8
-8 166 112 7 9
-9 167 113 8 10
-10 11 168 114 9
-11 12 169 115 10
-12 11 13 170 116
-13 12 14 171 117
-14 13 15 172 118
-15 14 16 173 119
-16 15 17 174 120
-17 121 16 18 175
-18 176 122 17 19
-19 177 123 18 20
-20 178 124 19 21
-21 22 179 125 20
-22 23 180 126 21
-23 22 24 181 127
-24 23 25 182 128
-25 24 26 183 129
-26 25 27 184 130
-27 26 28 185 131
-28 132 27 29 186
-29 187 133 28 30
-30 188 134 29 31
-31 189 135 30 32
-32 33 190 136 31
-33 34 191 137 32
-34 33 35 192 138
-35 34 36 193 139
-36 35 37 194 140
-37 36 38 195 141
-38 37 39 196 142
-39 143 38 40 197
-40 198 144 39 41
-41 199 145 40 42
-42 200 146 41 43
-43 44 201 147 42
-44 45 202 148 43
-45 44 46 203 149
-46 45 47 204 150
-47 46 48 205 151
-48 47 49 206 152
-49 48 50 207 153
-50 154 49 51 208
-51 155 50 105 52
-52 156 51 106 53
-53 157 52 107 54
-54 55 158 53 108
-55 56 159 54 109
-56 55 110 57 160
-57 56 111 58 161
-58 57 112 59 162
-59 58 113 60 163
-60 59 114 61 164
-61 165 60 115 62
-62 166 61 116 63
-63 167 62 117 64
-64 168 63 118 65
-65 66 169 64 119
-66 67 170 65 120
-67 66 121 68 171
-68 67 122 69 172
-69 68 123 70 173
-70 69 124 71 174
-71 70 125 72 175
-72 176 71 126 73
-73 177 72 127 74
-74 178 73 128 75
-75 179 74 129 76
-76 77 180 75 130
-77 78 181 76 131
-78 77 132 79 182
-79 78 133 80 183
-80 79 134 81 184
-81 80 135 82 185
-82 81 136 83 186
-83 187 82 137 84
-84 188 83 138 85
-85 189 84 139 86
-86 190 85 140 87
-87 88 191 86 141
-88 89 192 87 142
-89 88 143 90 193
-90 89 144 91 194
-91 90 145 92 195
-92 91 146 93 196
-93 92 147 94 197
-94 198 93 148 95
-95 199 94 149 96
-96 200 95 150 97
-97 201 96 151 98
-98 99 202 97 152
-99 100 203 98 153
-100 99 154 101 204
-101 100 155 102 205
-102 101 156 103 206
-103 102 157 104 207
-104 1 103 158 208
-105 1 51 106 208
-106 2 105 52 107
-107 3 106 53 108
-108 4 107 54 109
-109 55 110 5 108
-110 56 111 6 109
-111 110 57 112 7
-112 111 58 113 8
-113 112 59 114 9
-114 113 60 115 10
-115 11 114 61 116
-116 12 115 62 117
-117 13 116 63 118
-118 14 117 64 119
-119 15 118 65 120
-120 66 121 16 119
-121 67 122 17 120
-122 121 68 123 18
-123 122 69 124 19
-124 123 70 125 20
-125 124 71 126 21
-126 22 125 72 127
-127 23 126 73 128
-128 24 127 74 129
-129 25 128 75 130
-130 26 129 76 131
-131 77 132 27 130
-132 78 133 28 131
-133 132 79 134 29
-134 133 80 135 30
-135 134 81 136 31
-136 135 82 137 32
-137 33 136 83 138
-138 34 137 84 139
-139 35 138 85 140
-140 36 139 86 141
-141 37 140 87 142
-142 88 143 38 141
-143 89 144 39 142
-144 143 90 145 40
-145 144 91 146 41
-146 145 92 147 42
-147 146 93 148 43
-148 44 147 94 149
-149 45 148 95 150
-150 46 149 96 151
-151 47 150 97 152
-152 48 151 98 153
-153 99 154 49 152
-154 100 155 50 153
-155 154 101 156 51
-156 155 102 157 52
-157 156 103 158 53
-158 157 104 159 54
-159 55 1 158 160
-160 56 2 159 161
-161 57 3 160 162
-162 58 4 161 163
-163 59 5 162 164
-164 165 60 6 163
-165 166 61 7 164
-166 165 167 62 8
-167 166 168 63 9
-168 167 169 64 10
-169 11 168 170 65
-170 66 12 169 171
-171 67 13 170 172
-172 68 14 171 173
-173 69 15 172 174
-174 70 16 173 175
-175 176 71 17 174
-176 177 72 18 175
-177 176 178 73 19
-178 177 179 74 20
-179 178 180 75 21
-180 22 179 181 76
-181 77 23 180 182
-182 78 24 181 183
-183 79 25 182 184
-184 80 26 183 185
-185 81 27 184 186
-186 187 82 28 185
-187 188 83 29 186
-188 187 189 84 30
-189 188 190 85 31
-190 189 191 86 32
-191 33 190 192 87
-192 88 34 191 193
-193 89 35 192 194
-194 90 36 193 195
-195 91 37 194 196
-196 92 38 195 197
-197 198 93 39 196
-198 199 94 40 197
-199 198 200 95 41
-200 199 201 96 42
-201 200 202 97 43
-202 44 201 203 98
-203 99 45 202 204
-204 100 46 203 205
-205 101 47 204 206
-206 102 48 205 207
-207 103 49 206 208
-208 104 50 105 207
0

**************