C4graphGraph forms for C4 [ 208, 11 ] = MPS(4,104;5)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 208, 11 ] = MPS(4,104;5).

(I) Following is a form readable by MAGMA:

g:=Graph<208|{ {104, 107}, {145, 157}, {146, 158}, {147, 159}, {103, 106}, {102, 105}, {128, 167}, {136, 175}, {144, 183}, {152, 191}, {129, 168}, {131, 170}, {133, 172}, {135, 174}, {145, 184}, {147, 186}, {149, 188}, {151, 190}, {130, 169}, {134, 173}, {146, 185}, {150, 189}, {132, 171}, {148, 187}, {64, 114}, {72, 122}, {69, 119}, {68, 118}, {65, 115}, {73, 123}, {76, 126}, {77, 127}, {4, 55}, {8, 59}, {12, 63}, {1, 53}, {156, 168}, {2, 54}, {3, 55}, {8, 60}, {9, 61}, {10, 62}, {11, 63}, {148, 160}, {149, 161}, {150, 162}, {151, 163}, {3, 54}, {9, 60}, {11, 62}, {66, 116}, {67, 117}, {74, 124}, {75, 125}, {2, 53}, {64, 119}, {10, 61}, {72, 127}, {65, 120}, {71, 126}, {69, 124}, {67, 122}, {137, 176}, {139, 178}, {141, 180}, {143, 182}, {66, 121}, {70, 125}, {138, 177}, {142, 181}, {4, 56}, {155, 167}, {154, 166}, {153, 165}, {5, 57}, {6, 58}, {7, 59}, {152, 164}, {5, 56}, {7, 58}, {70, 120}, {71, 121}, {6, 57}, {68, 123}, {140, 179}, {128, 192}, {129, 193}, {130, 194}, {131, 195}, {132, 196}, {133, 197}, {134, 198}, {135, 199}, {136, 200}, {137, 201}, {138, 202}, {139, 203}, {140, 204}, {141, 205}, {142, 206}, {143, 207}, {144, 208}, {57, 112}, {63, 118}, {61, 116}, {59, 114}, {58, 113}, {62, 117}, {12, 64}, {47, 99}, {46, 98}, {45, 97}, {44, 96}, {13, 65}, {14, 66}, {15, 67}, {28, 80}, {29, 81}, {30, 82}, {31, 83}, {13, 64}, {47, 98}, {45, 96}, {15, 66}, {29, 80}, {31, 82}, {62, 112}, {63, 113}, {14, 65}, {60, 115}, {46, 97}, {30, 81}, {56, 106}, {61, 111}, {60, 110}, {57, 107}, {16, 67}, {52, 103}, {48, 99}, {20, 71}, {24, 75}, {28, 79}, {16, 68}, {51, 103}, {50, 102}, {49, 101}, {48, 100}, {17, 69}, {18, 70}, {19, 71}, {24, 76}, {25, 77}, {26, 78}, {27, 79}, {17, 68}, {51, 102}, {49, 100}, {19, 70}, {25, 76}, {27, 78}, {58, 108}, {59, 109}, {18, 69}, {56, 111}, {50, 101}, {26, 77}, {53, 108}, {155, 194}, {153, 192}, {55, 110}, {54, 109}, {154, 193}, {20, 72}, {52, 104}, {21, 73}, {22, 74}, {23, 75}, {21, 72}, {23, 74}, {55, 105}, {22, 73}, {156, 195}, {1, 104}, {32, 83}, {44, 95}, {40, 91}, {36, 87}, {32, 84}, {43, 95}, {42, 94}, {41, 93}, {40, 92}, {33, 85}, {34, 86}, {35, 87}, {33, 84}, {43, 94}, {41, 92}, {35, 86}, {34, 85}, {42, 93}, {36, 88}, {39, 91}, {38, 90}, {37, 89}, {37, 88}, {39, 90}, {38, 89}, {41, 160}, {47, 166}, {45, 164}, {43, 162}, {42, 161}, {46, 165}, {17, 157}, {51, 191}, {50, 190}, {49, 189}, {48, 188}, {18, 158}, {19, 159}, {32, 172}, {33, 173}, {34, 174}, {35, 175}, {44, 163}, {36, 176}, {47, 187}, {46, 186}, {45, 185}, {44, 184}, {39, 179}, {38, 178}, {37, 177}, {48, 167}, {49, 168}, {51, 170}, {50, 169}, {40, 180}, {43, 183}, {42, 182}, {41, 181}, {52, 171}, {109, 200}, {111, 202}, {117, 208}, {110, 201}, {54, 156}, {4, 175}, {16, 187}, {20, 191}, {108, 199}, {1, 172}, {3, 174}, {17, 188}, {19, 190}, {105, 196}, {107, 198}, {53, 155}, {2, 173}, {18, 189}, {106, 197}, {20, 160}, {21, 161}, {22, 162}, {23, 163}, {28, 168}, {29, 169}, {30, 170}, {31, 171}, {5, 176}, {7, 178}, {13, 184}, {15, 186}, {6, 177}, {40, 159}, {14, 185}, {39, 158}, {8, 179}, {38, 157}, {12, 183}, {112, 203}, {116, 207}, {24, 164}, {25, 165}, {26, 166}, {27, 167}, {9, 180}, {11, 182}, {113, 204}, {115, 206}, {10, 181}, {114, 205}, {1, 193}, {2, 194}, {3, 195}, {4, 196}, {5, 197}, {6, 198}, {7, 199}, {8, 200}, {9, 201}, {10, 202}, {11, 203}, {12, 204}, {13, 205}, {14, 206}, {15, 207}, {16, 208}, {105, 169}, {106, 170}, {107, 171}, {108, 172}, {109, 173}, {110, 174}, {111, 175}, {112, 176}, {113, 177}, {114, 178}, {115, 179}, {116, 180}, {117, 181}, {118, 182}, {119, 183}, {120, 184}, {121, 185}, {122, 186}, {123, 187}, {124, 188}, {125, 189}, {126, 190}, {127, 191}, {73, 128}, {75, 130}, {77, 132}, {79, 134}, {89, 144}, {91, 146}, {93, 148}, {95, 150}, {74, 129}, {78, 133}, {90, 145}, {94, 149}, {78, 128}, {79, 129}, {94, 144}, {95, 145}, {76, 131}, {92, 147}, {80, 130}, {81, 131}, {84, 134}, {85, 135}, {88, 138}, {89, 139}, {92, 142}, {93, 143}, {21, 192}, {23, 194}, {29, 200}, {31, 202}, {82, 132}, {83, 133}, {90, 140}, {91, 141}, {22, 193}, {30, 201}, {80, 135}, {88, 143}, {81, 136}, {83, 138}, {85, 140}, {87, 142}, {121, 160}, {123, 162}, {125, 164}, {127, 166}, {24, 195}, {28, 199}, {82, 137}, {86, 141}, {122, 161}, {126, 165}, {25, 196}, {27, 198}, {86, 136}, {87, 137}, {26, 197}, {84, 139}, {124, 163}, {120, 159}, {119, 158}, {32, 203}, {36, 207}, {118, 157}, {33, 204}, {35, 206}, {34, 205}, {96, 146}, {97, 147}, {100, 150}, {101, 151}, {104, 154}, {52, 192}, {37, 208}, {98, 148}, {99, 149}, {96, 151}, {97, 152}, {99, 154}, {101, 156}, {98, 153}, {102, 152}, {103, 153}, {100, 155} }>;

(II) A more general form is to represent the graph as the orbit of {104, 107} under the group generated by the following permutations:

a: (1, 53, 108, 172)(2, 58, 133, 193)(3, 63, 106, 162)(4, 68, 131, 183)(5, 73, 156, 204)(6, 78, 129, 173)(7, 83, 154, 194)(8, 88, 127, 163)(9, 93, 152, 184)(10, 98, 125, 205)(11, 103, 150, 174)(12, 56, 123, 195)(13, 61, 148, 164)(14, 66, 121, 185)(15, 71, 146, 206)(16, 76, 119, 175)(17, 81, 144, 196)(18, 86, 117, 165)(19, 91, 142, 186)(20, 96, 115, 207)(21, 101, 140, 176)(22, 54, 113, 197)(23, 59, 138, 166)(24, 64, 111, 187)(25, 69, 136, 208)(26, 74, 109, 177)(27, 79, 134, 198)(28, 84, 107, 167)(29, 89, 132, 188)(30, 94, 105, 157)(31, 99, 130, 178)(32, 104, 155, 199)(33, 57, 128, 168)(34, 62, 153, 189)(35, 67, 126, 158)(36, 72, 151, 179)(37, 77, 124, 200)(38, 82, 149, 169)(39, 87, 122, 190)(40, 92, 147, 159)(41, 97, 120, 180)(42, 102, 145, 201)(43, 55, 118, 170)(44, 60, 143, 191)(45, 65, 116, 160)(46, 70, 141, 181)(47, 75, 114, 202)(48, 80, 139, 171)(49, 85, 112, 192)(50, 90, 137, 161)(51, 95, 110, 182)(52, 100, 135, 203)
b: (2, 52)(3, 51)(4, 50)(5, 49)(6, 48)(7, 47)(8, 46)(9, 45)(10, 44)(11, 43)(12, 42)(13, 41)(14, 40)(15, 39)(16, 38)(17, 37)(18, 36)(19, 35)(20, 34)(21, 33)(22, 32)(23, 31)(24, 30)(25, 29)(26, 28)(53, 104)(54, 103)(55, 102)(56, 101)(57, 100)(58, 99)(59, 98)(60, 97)(61, 96)(62, 95)(63, 94)(64, 93)(65, 92)(66, 91)(67, 90)(68, 89)(69, 88)(70, 87)(71, 86)(72, 85)(73, 84)(74, 83)(75, 82)(76, 81)(77, 80)(78, 79)(106, 156)(107, 155)(108, 154)(109, 153)(110, 152)(111, 151)(112, 150)(113, 149)(114, 148)(115, 147)(116, 146)(117, 145)(118, 144)(119, 143)(120, 142)(121, 141)(122, 140)(123, 139)(124, 138)(125, 137)(126, 136)(127, 135)(128, 134)(129, 133)(130, 132)(157, 208)(158, 207)(159, 206)(160, 205)(161, 204)(162, 203)(163, 202)(164, 201)(165, 200)(166, 199)(167, 198)(168, 197)(169, 196)(170, 195)(171, 194)(172, 193)(173, 192)(174, 191)(175, 190)(176, 189)(177, 188)(178, 187)(179, 186)(180, 185)(181, 184)(182, 183)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52)(53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104)(105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156)(157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 208, 11 ]
208
-1 104 193 172 53
-2 194 173 53 54
-3 55 195 174 54
-4 55 56 196 175
-5 176 56 57 197
-6 198 177 57 58
-7 199 178 58 59
-8 200 179 59 60
-9 201 180 60 61
-10 202 181 61 62
-11 203 182 62 63
-12 204 183 63 64
-13 205 184 64 65
-14 66 206 185 65
-15 66 67 207 186
-16 187 67 68 208
-17 188 68 69 157
-18 189 69 70 158
-19 190 70 71 159
-20 191 71 72 160
-21 192 72 73 161
-22 193 73 74 162
-23 194 74 75 163
-24 195 75 76 164
-25 77 165 196 76
-26 77 78 166 197
-27 198 78 79 167
-28 199 79 80 168
-29 200 80 81 169
-30 201 81 82 170
-31 202 82 83 171
-32 203 83 84 172
-33 204 84 85 173
-34 205 85 86 174
-35 206 86 87 175
-36 88 176 207 87
-37 88 89 177 208
-38 89 90 178 157
-39 90 91 179 158
-40 91 92 180 159
-41 92 93 181 160
-42 93 94 182 161
-43 94 95 183 162
-44 95 96 184 163
-45 96 97 185 164
-46 165 97 98 186
-47 99 187 166 98
-48 99 100 188 167
-49 100 101 189 168
-50 101 102 190 169
-51 102 103 191 170
-52 103 104 192 171
-53 1 155 2 108
-54 2 156 3 109
-55 110 3 4 105
-56 111 4 5 106
-57 112 5 6 107
-58 113 6 7 108
-59 114 7 8 109
-60 110 115 8 9
-61 111 116 9 10
-62 11 112 117 10
-63 11 12 113 118
-64 12 13 114 119
-65 13 14 115 120
-66 121 14 15 116
-67 122 15 16 117
-68 123 16 17 118
-69 124 17 18 119
-70 125 18 19 120
-71 121 126 19 20
-72 122 127 20 21
-73 22 123 128 21
-74 22 23 124 129
-75 23 24 125 130
-76 24 25 126 131
-77 132 25 26 127
-78 133 26 27 128
-79 134 27 28 129
-80 135 28 29 130
-81 136 29 30 131
-82 132 137 30 31
-83 133 138 31 32
-84 33 134 139 32
-85 33 34 135 140
-86 34 35 136 141
-87 35 36 137 142
-88 143 36 37 138
-89 144 37 38 139
-90 145 38 39 140
-91 146 39 40 141
-92 147 40 41 142
-93 143 148 41 42
-94 144 149 42 43
-95 44 145 150 43
-96 44 45 146 151
-97 45 46 147 152
-98 46 47 148 153
-99 154 47 48 149
-100 155 48 49 150
-101 156 49 50 151
-102 50 105 51 152
-103 51 106 52 153
-104 154 1 52 107
-105 55 102 169 196
-106 56 103 170 197
-107 198 57 104 171
-108 199 58 172 53
-109 200 59 173 54
-110 55 201 60 174
-111 56 202 61 175
-112 176 57 203 62
-113 177 58 204 63
-114 178 59 205 64
-115 179 60 206 65
-116 66 180 61 207
-117 67 181 62 208
-118 68 157 182 63
-119 69 158 183 64
-120 70 159 184 65
-121 66 71 160 185
-122 67 72 161 186
-123 187 68 73 162
-124 188 69 74 163
-125 189 70 75 164
-126 165 190 71 76
-127 77 166 191 72
-128 78 167 192 73
-129 79 168 193 74
-130 80 169 194 75
-131 81 170 195 76
-132 77 82 171 196
-133 78 83 172 197
-134 198 79 84 173
-135 199 80 85 174
-136 200 81 86 175
-137 176 201 82 87
-138 88 177 202 83
-139 89 178 203 84
-140 90 179 204 85
-141 91 180 205 86
-142 92 181 206 87
-143 88 93 182 207
-144 89 94 183 208
-145 90 157 95 184
-146 91 158 96 185
-147 92 159 97 186
-148 187 93 160 98
-149 99 188 94 161
-150 100 189 95 162
-151 101 190 96 163
-152 102 191 97 164
-153 165 103 192 98
-154 99 166 104 193
-155 100 167 194 53
-156 101 168 195 54
-157 145 38 17 118
-158 146 39 18 119
-159 147 40 19 120
-160 121 148 41 20
-161 122 149 42 21
-162 22 123 150 43
-163 44 23 124 151
-164 45 24 125 152
-165 46 25 126 153
-166 154 47 26 127
-167 155 48 27 128
-168 156 49 28 129
-169 50 105 29 130
-170 51 106 30 131
-171 132 52 107 31
-172 1 133 108 32
-173 33 2 134 109
-174 110 34 3 135
-175 111 35 4 136
-176 112 36 5 137
-177 113 37 6 138
-178 114 38 7 139
-179 115 39 8 140
-180 116 40 9 141
-181 117 41 10 142
-182 11 143 118 42
-183 12 144 119 43
-184 44 13 145 120
-185 121 45 14 146
-186 122 46 15 147
-187 123 47 16 148
-188 124 48 17 149
-189 125 49 18 150
-190 126 50 19 151
-191 127 51 20 152
-192 128 52 21 153
-193 22 154 1 129
-194 23 155 2 130
-195 24 156 3 131
-196 132 25 4 105
-197 133 26 5 106
-198 134 27 6 107
-199 135 28 7 108
-200 136 29 8 109
-201 110 137 30 9
-202 111 138 31 10
-203 11 112 139 32
-204 33 12 113 140
-205 34 13 114 141
-206 35 14 115 142
-207 143 36 15 116
-208 144 37 16 117
0

**************