C4graphGraph forms for C4 [ 208, 15 ] = PL(MC3(4,26,1,25,5,0,1),[4^26,26^4])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 208, 15 ] = PL(MC3(4,26,1,25,5,0,1),[4^26,26^4]).

(I) Following is a form readable by MAGMA:

g:=Graph<208|{ {102, 111}, {100, 110}, {96, 113}, {100, 118}, {102, 117}, {96, 118}, {96, 127}, {87, 117}, {90, 120}, {83, 118}, {87, 114}, {81, 119}, {68, 108}, {87, 127}, {66, 107}, {81, 123}, {67, 110}, {91, 117}, {77, 126}, {77, 121}, {91, 111}, {90, 110}, {68, 114}, {66, 122}, {82, 107}, {67, 120}, {74, 113}, {74, 118}, {82, 111}, {83, 110}, {54, 119}, {40, 107}, {41, 108}, {49, 121}, {57, 113}, {55, 124}, {62, 117}, {62, 114}, {54, 123}, {34, 108}, {49, 127}, {49, 126}, {55, 120}, {43, 123}, {40, 122}, {56, 107}, {43, 125}, {56, 111}, {59, 108}, {52, 109}, {33, 123}, {39, 125}, {39, 124}, {41, 114}, {33, 125}, {33, 127}, {52, 106}, {9, 105}, {30, 124}, {29, 126}, {12, 105}, {30, 120}, {29, 122}, {20, 124}, {4, 109}, {26, 115}, {20, 125}, {16, 121}, {26, 112}, {5, 105}, {3, 109}, {31, 113}, {6, 105}, {22, 121}, {4, 116}, {14, 126}, {7, 119}, {2, 115}, {28, 109}, {5, 116}, {1, 115}, {14, 122}, {28, 106}, {3, 116}, {7, 112}, {12, 116}, {10, 112}, {16, 106}, {22, 106}, {10, 119}, {13, 112}, {13, 115}, {3, 130}, {35, 162}, {32, 161}, {23, 149}, {25, 155}, {74, 200}, {47, 172}, {50, 177}, {59, 184}, {83, 208}, {17, 149}, {36, 160}, {67, 199}, {68, 192}, {78, 202}, {19, 150}, {53, 176}, {52, 177}, {56, 189}, {60, 185}, {69, 192}, {18, 149}, {36, 163}, {9, 129}, {52, 189}, {55, 190}, {63, 182}, {74, 195}, {27, 145}, {70, 204}, {7, 140}, {91, 208}, {42, 161}, {38, 173}, {23, 156}, {21, 158}, {38, 170}, {46, 162}, {73, 197}, {24, 149}, {37, 168}, {68, 201}, {17, 159}, {45, 163}, {37, 171}, {77, 195}, {13, 130}, {29, 146}, {25, 150}, {1, 145}, {28, 140}, {15, 158}, {95, 206}, {32, 177}, {44, 190}, {1, 146}, {84, 199}, {53, 166}, {41, 186}, {2, 145}, {48, 164}, {53, 161}, {16, 134}, {51, 165}, {21, 131}, {84, 194}, {5, 146}, {92, 203}, {35, 180}, {31, 136}, {15, 151}, {86, 206}, {63, 167}, {43, 178}, {51, 170}, {45, 180}, {38, 188}, {93, 199}, {50, 168}, {80, 203}, {34, 190}, {39, 186}, {40, 181}, {61, 160}, {51, 173}, {61, 163}, {93, 194}, {6, 166}, {11, 171}, {48, 145}, {37, 135}, {53, 151}, {44, 142}, {58, 152}, {63, 157}, {6, 165}, {42, 137}, {36, 135}, {8, 172}, {44, 136}, {31, 186}, {8, 174}, {22, 176}, {11, 173}, {58, 156}, {20, 179}, {38, 129}, {29, 186}, {47, 135}, {102, 206}, {17, 184}, {46, 135}, {27, 178}, {100, 206}, {4, 175}, {99, 200}, {50, 153}, {30, 181}, {15, 164}, {61, 150}, {50, 158}, {22, 187}, {9, 166}, {103, 200}, {34, 141}, {26, 181}, {23, 184}, {60, 147}, {54, 134}, {2, 179}, {48, 129}, {45, 156}, {42, 155}, {21, 164}, {4, 181}, {57, 136}, {60, 142}, {17, 162}, {46, 157}, {24, 171}, {6, 178}, {47, 155}, {23, 163}, {24, 173}, {101, 208}, {55, 130}, {39, 146}, {26, 175}, {25, 172}, {25, 175}, {51, 133}, {59, 141}, {63, 137}, {10, 189}, {19, 171}, {104, 208}, {32, 153}, {10, 177}, {32, 155}, {19, 168}, {8, 180}, {35, 159}, {19, 175}, {18, 174}, {60, 128}, {14, 179}, {61, 128}, {18, 172}, {27, 165}, {11, 180}, {27, 164}, {15, 176}, {12, 179}, {58, 133}, {65, 129}, {66, 130}, {69, 133}, {88, 153}, {97, 160}, {75, 137}, {86, 148}, {12, 207}, {92, 159}, {64, 131}, {11, 207}, {85, 144}, {98, 167}, {88, 157}, {76, 138}, {94, 152}, {3, 196}, {14, 201}, {8, 207}, {71, 128}, {78, 137}, {84, 147}, {5, 205}, {98, 170}, {9, 193}, {70, 142}, {72, 128}, {80, 152}, {13, 196}, {93, 148}, {71, 141}, {73, 131}, {79, 133}, {1, 205}, {95, 147}, {80, 156}, {2, 207}, {7, 202}, {69, 139}, {70, 136}, {95, 144}, {21, 197}, {93, 141}, {78, 158}, {75, 154}, {94, 143}, {30, 204}, {86, 132}, {71, 148}, {101, 182}, {31, 203}, {94, 138}, {16, 197}, {24, 205}, {72, 157}, {28, 202}, {90, 140}, {76, 154}, {92, 139}, {96, 183}, {103, 191}, {86, 143}, {64, 154}, {89, 131}, {69, 159}, {84, 142}, {76, 151}, {95, 132}, {88, 132}, {99, 191}, {20, 201}, {72, 150}, {104, 182}, {85, 139}, {82, 140}, {18, 205}, {85, 138}, {33, 193}, {102, 134}, {92, 188}, {91, 187}, {87, 183}, {42, 202}, {37, 196}, {79, 174}, {81, 176}, {41, 203}, {100, 134}, {85, 183}, {90, 185}, {34, 198}, {40, 204}, {35, 198}, {97, 132}, {76, 169}, {36, 194}, {89, 191}, {78, 168}, {79, 169}, {43, 195}, {103, 143}, {99, 139}, {98, 138}, {65, 169}, {73, 161}, {83, 187}, {64, 169}, {94, 183}, {44, 198}, {101, 143}, {72, 162}, {79, 165}, {81, 187}, {45, 198}, {47, 196}, {75, 160}, {82, 185}, {46, 194}, {80, 188}, {65, 174}, {73, 166}, {49, 193}, {57, 201}, {48, 193}, {101, 148}, {54, 197}, {99, 144}, {89, 170}, {98, 151}, {62, 200}, {59, 204}, {97, 153}, {104, 144}, {57, 192}, {58, 192}, {97, 154}, {104, 147}, {66, 190}, {62, 195}, {65, 188}, {75, 182}, {67, 189}, {89, 167}, {70, 184}, {71, 185}, {56, 199}, {103, 152}, {88, 167}, {64, 191}, {77, 178} }>;

(II) A more general form is to represent the graph as the orbit of {102, 111} under the group generated by the following permutations:

a: (1, 3)(2, 4)(5, 13)(6, 7)(8, 30)(9, 10)(11, 40)(12, 26)(14, 19)(15, 16)(17, 34)(18, 55)(20, 25)(21, 22)(23, 44)(24, 66)(27, 28)(29, 37)(31, 36)(32, 33)(35, 59)(38, 56)(39, 47)(41, 46)(42, 43)(45, 70)(48, 52)(49, 50)(51, 82)(53, 54)(57, 61)(58, 60)(62, 63)(64, 83)(65, 67)(68, 72)(69, 71)(73, 81)(74, 75)(76, 100)(77, 78)(79, 90)(80, 84)(85, 86)(87, 88)(89, 91)(92, 93)(94, 95)(96, 97)(98, 102)(99, 101)(103, 104)(105, 112)(106, 164)(107, 173)(108, 162)(109, 145)(110, 169)(111, 170)(113, 160)(114, 157)(115, 116)(117, 167)(118, 154)(119, 166)(120, 174)(121, 158)(122, 171)(123, 161)(124, 172)(125, 155)(126, 168)(127, 153)(128, 192)(129, 189)(130, 205)(131, 187)(132, 183)(133, 185)(134, 151)(135, 186)(136, 163)(137, 195)(138, 206)(139, 148)(140, 165)(141, 159)(142, 156)(143, 144)(146, 196)(147, 152)(149, 190)(150, 201)(175, 179)(176, 197)(177, 193)(178, 202)(180, 204)(181, 207)(182, 200)(184, 198)(188, 199)(191, 208)(194, 203)
b: (2, 5)(3, 8, 6, 14)(4, 11, 9, 20)(7, 17, 15, 31)(10, 23, 21, 41)(13, 18, 27, 29)(16, 34, 32, 58)(19, 38, 33, 30)(22, 44, 42, 69)(24, 48, 39, 26)(25, 51, 49, 55)(28, 35, 53, 57)(36, 64, 62, 56)(37, 65, 43, 40)(45, 73, 68, 52)(46, 76, 74, 82)(47, 79, 77, 66)(50, 80, 54, 59)(60, 63, 85, 83)(61, 89, 87, 67)(70, 78, 92, 81)(71, 88, 94, 100)(72, 98, 96, 90)(75, 99, 91, 84)(93, 97, 103, 102)(95, 101)(105, 179, 116, 207)(106, 198, 161, 192)(107, 135, 169, 195)(108, 177, 156, 197)(109, 180, 166, 201)(110, 128, 167, 183)(111, 194, 154, 200)(112, 149, 164, 186)(113, 140, 162, 151)(114, 189, 163, 131)(115, 205, 145, 146)(117, 199, 160, 191)(118, 185, 157, 138)(119, 184, 158, 203)(120, 150, 170, 127)(121, 190, 155, 133)(122, 196, 174, 178)(123, 204, 168, 188)(124, 175, 173, 193)(125, 181, 171, 129)(126, 130, 172, 165)(132, 143, 206, 148)(134, 141, 153, 152)(136, 202, 159, 176)(137, 139, 187, 142)(144, 208, 147, 182)
c: (1, 2, 12, 5)(3, 18, 48, 20)(4, 24, 27, 14)(6, 29, 26, 11)(7, 35, 73, 41)(8, 9, 39, 13)(10, 45, 53, 31)(15, 57, 52, 23)(16, 59, 78, 69)(17, 21, 68, 28)(19, 51, 77, 40)(22, 70, 50, 58)(25, 38, 43, 66)(30, 37, 79, 49)(32, 80, 81, 44)(33, 55, 47, 65)(34, 42, 92, 54)(36, 76, 96, 67)(46, 64, 87, 90)(56, 61, 98, 74)(60, 88, 103, 91)(62, 82, 72, 89)(63, 99, 102, 71)(75, 85, 100, 93)(83, 84, 97, 94)(86, 101, 104, 95)(105, 146, 115, 207)(106, 184, 158, 192)(107, 150, 170, 195)(108, 202, 159, 197)(109, 149, 164, 201)(110, 194, 154, 183)(111, 128, 167, 200)(112, 180, 166, 186)(113, 189, 163, 151)(114, 140, 162, 131)(116, 205, 145, 179)(117, 185, 157, 191)(118, 199, 160, 138)(119, 198, 161, 203)(120, 135, 169, 127)(121, 204, 168, 133)(122, 175, 173, 178)(123, 190, 155, 188)(124, 196, 174, 193)(125, 130, 172, 129)(126, 181, 171, 165)(132, 143, 208, 147)(134, 141, 137, 139)(136, 177, 156, 176)(142, 153, 152, 187)(144, 206, 148, 182)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 208, 15 ]
208
-1 145 146 115 205
-2 145 179 115 207
-3 116 130 196 109
-4 181 116 109 175
-5 146 105 116 205
-6 165 166 178 105
-7 112 202 140 119
-8 180 172 174 207
-9 166 105 193 129
-10 177 112 189 119
-11 180 171 173 207
-12 179 105 116 207
-13 112 115 130 196
-14 122 179 201 126
-15 176 158 151 164
-16 121 134 106 197
-17 159 149 162 184
-18 149 172 205 174
-19 168 171 150 175
-20 124 179 201 125
-21 158 131 164 197
-22 121 176 187 106
-23 156 149 184 163
-24 149 171 205 173
-25 155 150 172 175
-26 112 115 181 175
-27 165 145 178 164
-28 202 106 140 109
-29 122 146 126 186
-30 124 181 204 120
-31 113 136 203 186
-32 155 177 161 153
-33 123 125 127 193
-34 198 190 108 141
-35 198 180 159 162
-36 135 160 194 163
-37 135 168 171 196
-38 188 170 129 173
-39 124 146 125 186
-40 122 181 204 107
-41 114 203 108 186
-42 155 202 137 161
-43 123 178 125 195
-44 198 190 136 142
-45 198 156 180 163
-46 135 157 194 162
-47 155 135 172 196
-48 145 193 129 164
-49 121 126 127 193
-50 177 168 158 153
-51 165 133 170 173
-52 177 189 106 109
-53 176 166 161 151
-54 123 134 119 197
-55 124 190 130 120
-56 111 199 189 107
-57 113 201 136 192
-58 133 156 192 152
-59 204 184 108 141
-60 147 128 185 142
-61 160 128 150 163
-62 200 114 117 195
-63 167 157 137 182
-64 154 169 191 131
-65 188 169 129 174
-66 122 190 107 130
-67 110 199 189 120
-68 201 114 192 108
-69 133 159 192 139
-70 136 204 184 142
-71 148 128 141 185
-72 157 128 150 162
-73 166 161 131 197
-74 200 113 118 195
-75 154 137 160 182
-76 154 169 138 151
-77 121 178 126 195
-78 168 158 202 137
-79 165 133 169 174
-80 188 156 203 152
-81 176 187 123 119
-82 111 107 140 185
-83 110 187 118 208
-84 199 147 194 142
-85 144 138 139 183
-86 132 143 148 206
-87 114 127 117 183
-88 132 167 157 153
-89 167 191 170 131
-90 110 140 185 120
-91 187 111 117 208
-92 188 159 203 139
-93 199 148 194 141
-94 143 138 183 152
-95 132 144 147 206
-96 113 127 183 118
-97 132 154 160 153
-98 167 170 138 151
-99 144 200 191 139
-100 110 134 118 206
-101 143 148 182 208
-102 111 134 117 206
-103 143 200 191 152
-104 144 147 182 208
-105 12 5 6 9
-106 22 16 28 52
-107 66 56 82 40
-108 34 68 59 41
-109 3 4 28 52
-110 67 100 90 83
-111 56 91 102 82
-112 13 26 7 10
-113 57 74 96 31
-114 68 62 41 87
-115 1 2 13 26
-116 12 3 4 5
-117 91 102 62 87
-118 100 83 74 96
-119 81 7 10 54
-120 55 67 90 30
-121 22 77 16 49
-122 66 14 29 40
-123 33 81 43 54
-124 55 39 30 20
-125 33 39 20 43
-126 77 14 49 29
-127 33 49 96 87
-128 60 71 61 72
-129 48 38 9 65
-130 55 66 13 3
-131 89 73 64 21
-132 88 95 86 97
-133 79 58 69 51
-134 100 102 16 54
-135 46 36 47 37
-136 44 57 70 31
-137 78 63 42 75
-138 94 85 76 98
-139 99 69 92 85
-140 90 82 28 7
-141 34 59 71 93
-142 44 70 60 84
-143 101 103 94 86
-144 99 104 95 85
-145 1 2 48 27
-146 1 5 39 29
-147 60 104 84 95
-148 101 71 93 86
-149 23 24 17 18
-150 25 61 72 19
-151 15 53 76 98
-152 58 80 103 94
-153 88 50 97 32
-154 64 75 97 76
-155 25 47 42 32
-156 23 45 58 80
-157 88 46 72 63
-158 78 15 50 21
-159 35 69 92 17
-160 36 61 75 97
-161 73 42 53 32
-162 35 46 17 72
-163 23 45 36 61
-164 15 48 27 21
-165 79 27 6 51
-166 6 73 9 53
-167 88 89 63 98
-168 78 37 50 19
-169 79 64 65 76
-170 89 38 51 98
-171 11 24 37 19
-172 25 47 18 8
-173 11 24 38 51
-174 79 18 8 65
-175 25 4 26 19
-176 22 15 81 53
-177 50 52 10 32
-178 77 27 6 43
-179 12 2 14 20
-180 11 45 35 8
-181 4 26 40 30
-182 101 104 63 75
-183 94 85 96 87
-184 23 59 70 17
-185 90 60 71 82
-186 39 29 41 31
-187 22 91 81 83
-188 80 92 38 65
-189 56 67 52 10
-190 44 55 66 34
-191 99 89 103 64
-192 57 68 58 69
-193 33 48 49 9
-194 46 36 93 84
-195 77 62 74 43
-196 13 3 47 37
-197 16 73 21 54
-198 44 34 45 35
-199 56 67 93 84
-200 99 103 62 74
-201 57 68 14 20
-202 78 28 7 42
-203 80 92 41 31
-204 59 70 40 30
-205 1 24 5 18
-206 100 102 95 86
-207 11 12 2 8
-208 101 91 104 83
0

**************