C4graphGraph forms for C4 [ 208, 17 ] = KE_52(1,11,2,43,1)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 208, 17 ] = KE_52(1,11,2,43,1).

(I) Following is a form readable by MAGMA:

g:=Graph<208|{ {2, 3}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {50, 51}, {48, 49}, {46, 47}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {104, 106}, {1, 2}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {3, 4}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {51, 52}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {163, 164}, {171, 172}, {103, 105}, {7, 8}, {199, 200}, {183, 184}, {23, 24}, {39, 40}, {167, 168}, {15, 16}, {207, 208}, {47, 48}, {175, 176}, {16, 57}, {18, 59}, {20, 61}, {22, 63}, {17, 58}, {21, 62}, {19, 60}, {64, 116}, {75, 127}, {74, 126}, {73, 125}, {72, 124}, {67, 119}, {66, 118}, {65, 117}, {128, 180}, {129, 181}, {130, 182}, {131, 183}, {136, 188}, {137, 189}, {138, 190}, {139, 191}, {1, 52}, {64, 118}, {73, 127}, {72, 126}, {65, 119}, {15, 56}, {12, 53}, {14, 55}, {66, 120}, {71, 125}, {70, 124}, {67, 121}, {13, 54}, {68, 120}, {71, 123}, {70, 122}, {69, 121}, {132, 184}, {133, 185}, {134, 186}, {135, 187}, {68, 122}, {69, 123}, {31, 32}, {159, 160}, {58, 112}, {63, 117}, {62, 116}, {59, 113}, {60, 112}, {63, 115}, {62, 114}, {61, 113}, {140, 192}, {141, 193}, {142, 194}, {143, 195}, {156, 208}, {157, 208}, {60, 114}, {61, 115}, {56, 108}, {59, 111}, {58, 110}, {57, 109}, {144, 196}, {145, 197}, {146, 198}, {147, 199}, {152, 204}, {153, 205}, {154, 206}, {155, 207}, {56, 110}, {57, 111}, {23, 64}, {31, 72}, {24, 65}, {26, 67}, {28, 69}, {30, 71}, {54, 108}, {55, 109}, {25, 66}, {29, 70}, {53, 105}, {55, 107}, {54, 106}, {148, 200}, {149, 201}, {150, 202}, {151, 203}, {2, 95}, {53, 107}, {1, 94}, {27, 68}, {3, 96}, {7, 100}, {11, 104}, {4, 97}, {6, 99}, {5, 98}, {1, 105}, {2, 106}, {3, 107}, {4, 108}, {5, 109}, {6, 110}, {7, 111}, {16, 120}, {17, 121}, {18, 122}, {19, 123}, {20, 124}, {21, 125}, {22, 126}, {23, 127}, {32, 73}, {52, 93}, {50, 91}, {48, 89}, {34, 75}, {36, 77}, {38, 79}, {33, 74}, {49, 90}, {37, 78}, {8, 101}, {10, 103}, {9, 102}, {51, 92}, {35, 76}, {39, 80}, {47, 88}, {8, 112}, {9, 113}, {10, 114}, {11, 115}, {12, 116}, {13, 117}, {14, 118}, {15, 119}, {40, 81}, {46, 87}, {42, 83}, {44, 85}, {41, 82}, {45, 86}, {43, 84}, {191, 192}, {24, 128}, {25, 129}, {26, 130}, {27, 131}, {28, 132}, {29, 133}, {30, 134}, {31, 135}, {63, 158}, {97, 192}, {99, 194}, {101, 196}, {103, 198}, {62, 157}, {98, 193}, {102, 197}, {100, 195}, {32, 136}, {52, 156}, {51, 155}, {50, 154}, {49, 153}, {48, 152}, {33, 137}, {34, 138}, {35, 139}, {36, 140}, {37, 141}, {38, 142}, {39, 143}, {104, 199}, {40, 144}, {47, 151}, {46, 150}, {45, 149}, {44, 148}, {41, 145}, {42, 146}, {43, 147}, {74, 128}, {79, 133}, {78, 132}, {75, 129}, {90, 144}, {91, 145}, {94, 148}, {95, 149}, {76, 128}, {79, 131}, {78, 130}, {77, 129}, {92, 144}, {93, 145}, {94, 146}, {95, 147}, {108, 160}, {109, 161}, {110, 162}, {111, 163}, {124, 176}, {125, 177}, {126, 178}, {127, 179}, {76, 130}, {77, 131}, {92, 146}, {93, 147}, {80, 132}, {81, 133}, {82, 134}, {83, 135}, {88, 140}, {89, 141}, {90, 142}, {91, 143}, {112, 164}, {113, 165}, {114, 166}, {115, 167}, {120, 172}, {121, 173}, {122, 174}, {123, 175}, {80, 134}, {81, 135}, {88, 142}, {89, 143}, {82, 136}, {83, 137}, {86, 140}, {87, 141}, {84, 136}, {85, 137}, {86, 138}, {87, 139}, {116, 168}, {117, 169}, {118, 170}, {119, 171}, {84, 138}, {85, 139}, {64, 159}, {96, 191}, {65, 160}, {79, 174}, {77, 172}, {75, 170}, {73, 168}, {71, 166}, {69, 164}, {67, 162}, {81, 176}, {83, 178}, {85, 180}, {87, 182}, {89, 184}, {91, 186}, {93, 188}, {95, 190}, {66, 161}, {78, 173}, {74, 169}, {70, 165}, {82, 177}, {86, 181}, {90, 185}, {94, 189}, {68, 163}, {76, 171}, {84, 179}, {92, 187}, {61, 208}, {72, 167}, {88, 183}, {56, 203}, {60, 207}, {96, 148}, {97, 149}, {98, 150}, {99, 151}, {104, 156}, {105, 157}, {106, 158}, {107, 159}, {57, 204}, {59, 206}, {96, 150}, {97, 151}, {58, 205}, {98, 152}, {99, 153}, {102, 156}, {100, 152}, {101, 153}, {102, 154}, {103, 155}, {53, 200}, {55, 202}, {100, 154}, {101, 155}, {54, 201}, {80, 175} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52)(53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104)(105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156)(157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208)
b: (2, 94, 52, 105)(3, 189, 51, 157)(4, 137, 50, 62)(5, 33, 49, 21)(6, 74, 48, 125)(7, 169, 47, 177)(8, 117, 46, 82)(9, 13, 45, 41)(10, 54, 44, 145)(11, 201, 43, 197)(12, 149, 42, 102)(14, 86, 40, 113)(15, 181, 39, 165)(16, 129, 38, 70)(17, 25, 37, 29)(18, 66, 36, 133)(19, 161, 35, 185)(20, 109, 34, 90)(22, 98, 32, 153)(23, 193, 31, 205)(24, 141, 30, 58)(26, 78, 28, 121)(27, 173)(53, 95, 146, 156)(55, 138, 144, 61)(56, 180, 143, 166)(57, 75, 142, 124)(59, 118, 140, 81)(60, 160, 139, 186)(63, 150, 136, 101)(64, 192, 135, 206)(65, 87, 134, 112)(67, 130, 132, 69)(68, 172, 131, 174)(71, 110, 128, 89)(72, 204, 127, 194)(73, 99, 126, 152)(76, 184, 123, 162)(77, 79, 122, 120)(80, 164, 119, 182)(83, 154, 116, 97)(84, 196, 115, 202)(85, 91, 114, 108)(88, 176, 111, 170)(92, 208, 107, 190)(93, 103, 106, 148)(96, 188, 155, 158)(100, 168, 151, 178)(104, 200, 147, 198)(159, 191, 187, 207)(163, 171, 183, 175)(167, 203, 179, 195)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 208, 17 ]
208
-1 2 94 105 52
-2 1 3 95 106
-3 2 4 96 107
-4 3 5 97 108
-5 4 6 98 109
-6 99 110 5 7
-7 100 111 6 8
-8 101 112 7 9
-9 102 113 8 10
-10 11 103 114 9
-11 12 104 115 10
-12 11 13 116 53
-13 12 14 117 54
-14 55 13 15 118
-15 56 14 16 119
-16 57 15 17 120
-17 121 58 16 18
-18 122 59 17 19
-19 123 60 18 20
-20 124 61 19 21
-21 22 125 62 20
-22 23 126 63 21
-23 22 24 127 64
-24 23 25 128 65
-25 66 24 26 129
-26 67 25 27 130
-27 68 26 28 131
-28 132 69 27 29
-29 133 70 28 30
-30 134 71 29 31
-31 135 72 30 32
-32 33 136 73 31
-33 34 137 74 32
-34 33 35 138 75
-35 34 36 139 76
-36 77 35 37 140
-37 78 36 38 141
-38 79 37 39 142
-39 143 80 38 40
-40 144 81 39 41
-41 145 82 40 42
-42 146 83 41 43
-43 44 147 84 42
-44 45 148 85 43
-45 44 46 149 86
-46 45 47 150 87
-47 88 46 48 151
-48 89 47 49 152
-49 90 48 50 153
-50 154 91 49 51
-51 155 92 50 52
-52 1 156 93 51
-53 12 200 105 107
-54 13 201 106 108
-55 14 202 107 109
-56 110 15 203 108
-57 111 16 204 109
-58 110 112 17 205
-59 111 113 18 206
-60 112 114 19 207
-61 113 115 20 208
-62 157 114 116 21
-63 22 158 115 117
-64 23 159 116 118
-65 24 160 117 119
-66 25 161 118 120
-67 121 26 162 119
-68 122 27 163 120
-69 121 123 28 164
-70 165 122 124 29
-71 166 123 125 30
-72 167 124 126 31
-73 168 125 127 32
-74 33 169 126 128
-75 34 170 127 129
-76 35 171 128 130
-77 36 172 129 131
-78 132 37 173 130
-79 133 38 174 131
-80 132 134 39 175
-81 176 133 135 40
-82 177 134 136 41
-83 178 135 137 42
-84 179 136 138 43
-85 44 180 137 139
-86 45 181 138 140
-87 46 182 139 141
-88 47 183 140 142
-89 143 48 184 141
-90 144 49 185 142
-91 143 145 50 186
-92 187 144 146 51
-93 188 145 147 52
-94 1 189 146 148
-95 2 190 147 149
-96 3 191 148 150
-97 4 192 149 151
-98 5 193 150 152
-99 6 194 151 153
-100 154 7 195 152
-101 155 8 196 153
-102 154 156 9 197
-103 198 155 105 10
-104 11 199 156 106
-105 1 157 103 53
-106 2 158 104 54
-107 55 3 159 53
-108 56 4 160 54
-109 55 57 5 161
-110 56 58 6 162
-111 57 59 7 163
-112 58 60 8 164
-113 165 59 61 9
-114 166 60 62 10
-115 11 167 61 63
-116 12 168 62 64
-117 13 169 63 65
-118 66 14 170 64
-119 67 15 171 65
-120 66 68 16 172
-121 67 69 17 173
-122 68 70 18 174
-123 69 71 19 175
-124 176 70 72 20
-125 177 71 73 21
-126 22 178 72 74
-127 23 179 73 75
-128 24 180 74 76
-129 77 25 181 75
-130 78 26 182 76
-131 77 79 27 183
-132 78 80 28 184
-133 79 81 29 185
-134 80 82 30 186
-135 187 81 83 31
-136 188 82 84 32
-137 33 189 83 85
-138 34 190 84 86
-139 35 191 85 87
-140 88 36 192 86
-141 89 37 193 87
-142 88 90 38 194
-143 89 91 39 195
-144 90 92 40 196
-145 91 93 41 197
-146 198 92 94 42
-147 199 93 95 43
-148 44 200 94 96
-149 45 201 95 97
-150 46 202 96 98
-151 99 47 203 97
-152 100 48 204 98
-153 99 101 49 205
-154 100 102 50 206
-155 101 103 51 207
-156 102 104 52 208
-157 158 105 62 208
-158 157 159 106 63
-159 158 160 107 64
-160 159 161 108 65
-161 66 160 162 109
-162 110 67 161 163
-163 111 68 162 164
-164 165 112 69 163
-165 166 113 70 164
-166 165 167 114 71
-167 166 168 115 72
-168 167 169 116 73
-169 168 170 117 74
-170 169 171 118 75
-171 170 172 119 76
-172 77 171 173 120
-173 121 78 172 174
-174 122 79 173 175
-175 176 123 80 174
-176 177 124 81 175
-177 176 178 125 82
-178 177 179 126 83
-179 178 180 127 84
-180 179 181 128 85
-181 180 182 129 86
-182 181 183 130 87
-183 88 182 184 131
-184 132 89 183 185
-185 133 90 184 186
-186 187 134 91 185
-187 188 135 92 186
-188 187 189 136 93
-189 188 190 137 94
-190 189 191 138 95
-191 190 192 139 96
-192 191 193 140 97
-193 192 194 141 98
-194 99 193 195 142
-195 143 100 194 196
-196 144 101 195 197
-197 198 145 102 196
-198 199 146 103 197
-199 198 200 147 104
-200 199 201 148 53
-201 200 202 149 54
-202 55 201 203 150
-203 56 202 204 151
-204 57 203 205 152
-205 58 204 206 153
-206 154 59 205 207
-207 155 60 206 208
-208 156 157 61 207
0

**************